线性代数 施密特正交化中单位化中双括号里的怎么算
展开全部
施密特正交化中单位化中双括号里的东西是指的向量的模长吧, 如果是向量的模长的话,应该是把向量的各个分量先平方再相加,然后再开算数平方根,就是模长了。
而如果施密特正交化中单位化中双括号里的东西是指的向量的内积,那就是把两个向量对应分量相乘再相加,就是内积了。
一般地,用数学归纳法可以证明,利用线性无关向量组,构造出一个标准正交向量组的方法,就是施密特正交化方法。
扩展资料:
由于把一个正交向量组中每个向量经过单位化,就得到一个标准正交向量组,所以,上述问题的关键是如何由一个线性无关向量组来构造出一个正交向量组,我们以3个向量组成的线性无关组为例来说明这个方法。
设向量组 线性无关,我们先来构造正交向量组 ,并且使 与向量组 等价 。
按所要求的条件, 是 的线性组合, 是 的线性组合,为方便起见,不妨设
对于上面已经构造的向量 与 ,再来构造向量 ,为满足要求,可令
参考资料:百度百科---施密特正交化
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
施密特正交化中单位化中双括号里的东西是指的向量的模长吧, 如果是向量的模长的话,应该是把向量的各个分量先平方再相加,然后再开算数平方根,就是模长了.
而如果施密特正交化中单位化中双括号里的东西是指的向量的内积,那就是把两个向量对应分量相乘再相加,就是内积了.
而如果施密特正交化中单位化中双括号里的东西是指的向量的内积,那就是把两个向量对应分量相乘再相加,就是内积了.
追问
能不能举个例子,就是模长
追答
比如三维向量a=(1,2,3),其模长表示为||a||=根号下(1^2+2^2+3^2)=根号下14.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
括号的意思是内积,和高中学的一样的。具体正交标准化过程很容易,狂算即可:先找见一个极大无关组,然后施密特正交化,然后每一列的元素除以对应列向量的模。要是没有最后一步就是正交化,不叫正交标准化。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询