设o是坐标原点,F是抛物线y^2=2px(p>0)的焦点,A是抛物线上的一点,FA与x轴正向的夹角为60°,则|oA|为

feidao2010
2013-01-01 · TA获得超过13.7万个赞
知道顶级答主
回答量:2.5万
采纳率:92%
帮助的人:1.6亿
展开全部
解答:
∵向量FA与x轴正向夹角为60°,
∴直线FA的斜率k=tan60°=√3,且A在F的右侧。
∴直线FA的方程是:y=√3(x-p/2)
将直线方程代入y²=2px
∴3(x-p/2)²=2px
∴3x²-3px+3p²/4 = 2px
∴ 12x²-20px+3p²=0
∴ (6x-p)(2x-3p)=0
∴ x=p/6或x=3p/2
∵ A在F右侧
∴ xA=3p/2, ∴ yA=√3p
∴ |OA|=√(9p²/4+3p²)=√(21p)/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式