如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,
三角扳的一边交CD于点F.另一边交CB的延长线于点G.(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a...
三角扳的一边交CD于点F.另一边交CB的延长线于点G.
(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求 EFEG的值.
EF/EG 展开
(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求 EFEG的值.
EF/EG 展开
展开全部
(1)证明:∵∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,
∴∠DEF=∠GEB,
又∵ED=BE,
∴Rt△FED≌Rt△GEB,
∴EF=EG;
(2)成立.
证明:如图,过点E分别作BC、CD的垂线,垂足分别为H、I,
则EH=EI,∠HEI=90°,
∵∠GEH+∠HEF=90°,∠IEF+∠HEF=90°,
∴∠IEF=∠GEH,
∴Rt△FEI≌Rt△GEH,
∴EF=EG;
(3)解:如图,过点E分别作BC、CD的垂线,垂足分别为M、N,
则∠MEN=90°,
∴EM∥AB,EN∥AD.
∴△CEN∽△CAD,△CEM∽△CAB,
∴ , ,
∴ ,即 = ,
∵∠IEF+∠FEM=∠GEM+∠FEM=90°,
∴∠GEM=∠FEN,
∵∠GME=∠FNE=90°,
∴△GME∽△FNE,
∴∠DEF=∠GEB,
又∵ED=BE,
∴Rt△FED≌Rt△GEB,
∴EF=EG;
(2)成立.
证明:如图,过点E分别作BC、CD的垂线,垂足分别为H、I,
则EH=EI,∠HEI=90°,
∵∠GEH+∠HEF=90°,∠IEF+∠HEF=90°,
∴∠IEF=∠GEH,
∴Rt△FEI≌Rt△GEH,
∴EF=EG;
(3)解:如图,过点E分别作BC、CD的垂线,垂足分别为M、N,
则∠MEN=90°,
∴EM∥AB,EN∥AD.
∴△CEN∽△CAD,△CEM∽△CAB,
∴ , ,
∴ ,即 = ,
∵∠IEF+∠FEM=∠GEM+∠FEM=90°,
∴∠GEM=∠FEN,
∵∠GME=∠FNE=90°,
∴△GME∽△FNE,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
:(1)证明:∵∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,
∴∠DEF=∠GEB,
又∵ED=BE,
∴Rt△FED≌Rt△GEB,
∴EF=EG;
(2)成立.
证明:如图,过点E分别作BC、CD的垂线,垂足分别为H、I,
则EH=EI,∠HEI=90°,
∵∠GEH+∠HEF=90°,∠IEF+∠HEF=90°,
∴∠IEF=∠GEH,
∴Rt△FEI≌Rt△GEH,
∴EF=EG;
(3)解:如图,过点E分别作BC、CD的垂线,垂足分别为M、N,
则∠MEN=90°,
∴EM∥AB,EN∥AD.
∴△CEN∽△CAD,△CEM∽△CAB,
∴ , ,
∴ ,即 = ,
∵∠IEF+∠FEM=∠GEM+∠FEM=90°,
∴∠GEM=∠FEN,
∵∠GME=∠FNE=90°,
∴△GME∽△FNE,
∴ ,
∴ . 赞一下
∴∠DEF=∠GEB,
又∵ED=BE,
∴Rt△FED≌Rt△GEB,
∴EF=EG;
(2)成立.
证明:如图,过点E分别作BC、CD的垂线,垂足分别为H、I,
则EH=EI,∠HEI=90°,
∵∠GEH+∠HEF=90°,∠IEF+∠HEF=90°,
∴∠IEF=∠GEH,
∴Rt△FEI≌Rt△GEH,
∴EF=EG;
(3)解:如图,过点E分别作BC、CD的垂线,垂足分别为M、N,
则∠MEN=90°,
∴EM∥AB,EN∥AD.
∴△CEN∽△CAD,△CEM∽△CAB,
∴ , ,
∴ ,即 = ,
∵∠IEF+∠FEM=∠GEM+∠FEM=90°,
∴∠GEM=∠FEN,
∵∠GME=∠FNE=90°,
∴△GME∽△FNE,
∴ ,
∴ . 赞一下
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询