一道关于数列的数学题
12.0分)已知数列{an}的首项为a1,前n项和为Sn,且(Sn/n,S(n+1)/(n=1))点在直线y=x-p上,p为常数,n∈N*.(1)求数列an的通项公示(2...
12.0分) 已知数列{an}的首项为a1,前n项和为Sn,且(Sn/n,S(n+1)/(n=1))点在直线y=x-p上,p为常数,n∈N*. (1) 求数列an的通项公示 (2)当a1=10,且S10是Sn中的一个最大项,试求P的取值范围
展开
3个回答
2013-01-01
展开全部
解:由于点(sn/n,sn+1/n+1)在直线y=x-p上
则有:
S(n+1)/(n+1)=Sn/n-p
则:
S(n+1)/(n+1)-Sn/n=-p
则:{Sn/n}为公差为-p的等差数列
则:Sn/n=S1/1-p(n-1)
=a1-p(n-1)
则:Sn=a1n-p(n-1)n
=-pn^2+(a1+p)n
=-pn^2+(a+p)n
则:n>=2时,
an=Sn-S(n-1)
=[-pn^2+(a+p)n]-[-p(n-1)^2+(a+p)(n-1)]
=-2pn+(a+2p)
又a1=-2p*1+a+2p=a
则:
an=-2pn+(a+2p)(n属于N*)
(2)
S10=10(a1+a10)/2, a10=-20p+a+2p=-18p+a
=-90p+10
又S9=-72p+9
S11=-110p+11
且S10最大
则:S10>=S9,S10>=S11
-90p+10>=-72p+9
1>=18p
p<=1/18
-90p+10>=-110p+11
20p>=1
p>=1/20
故p的范围是[1/18,1/20]
则有:
S(n+1)/(n+1)=Sn/n-p
则:
S(n+1)/(n+1)-Sn/n=-p
则:{Sn/n}为公差为-p的等差数列
则:Sn/n=S1/1-p(n-1)
=a1-p(n-1)
则:Sn=a1n-p(n-1)n
=-pn^2+(a1+p)n
=-pn^2+(a+p)n
则:n>=2时,
an=Sn-S(n-1)
=[-pn^2+(a+p)n]-[-p(n-1)^2+(a+p)(n-1)]
=-2pn+(a+2p)
又a1=-2p*1+a+2p=a
则:
an=-2pn+(a+2p)(n属于N*)
(2)
S10=10(a1+a10)/2, a10=-20p+a+2p=-18p+a
=-90p+10
又S9=-72p+9
S11=-110p+11
且S10最大
则:S10>=S9,S10>=S11
-90p+10>=-72p+9
1>=18p
p<=1/18
-90p+10>=-110p+11
20p>=1
p>=1/20
故p的范围是[1/18,1/20]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询