已知,如图,AB=CD,BC=DA,E,F是AC上两点,且AE=CF.求证:BF=DE 5

糖原有点甜AYc2f
2013-04-08 · TA获得超过205个赞
知道答主
回答量:42
采纳率:0%
帮助的人:13.7万
展开全部
1、做AM⊥BD于M,CN⊥BD于N
∵AB=CD,BC=DA
∴ABCD是平行四边形
∴AB∥DC
∴∠ABM=∠CDN
∵AB=CD
∴Rt△ABM≌Rt△CDN(AAS)
∴AM=CN
∵AE=CF
∴Rt△AEM≌Rt△CFN(HL)
∴∠AEM=∠CFN
∴∠AEB=∠CFD(与上面角互补关系)
∵AB=CD,∠ABE=∠CDF
∴△ABE≌△CDF(AAS)
∴BE=DF
∴BE+EF=DF+EF
即BF=DE

富港检测技术(东莞)有限公司_
2024-03-25 广告
ASTM D4169-16标准是运用实际物流案例中具有代表性的和经过实践证明的一种试验方法,ASTM D4169-16有18个物流分配周期、10个危险因素和3个等级测试强度。10个危险因素分别为:A人工和机械操作(跌落、冲击和稳定性)、B仓... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
mbcsjs
2013-01-02 · TA获得超过23.4万个赞
知道顶级答主
回答量:7.6万
采纳率:77%
帮助的人:3.2亿
展开全部
1、做AM⊥BD于M,CN⊥BD于N
∵AB=CD,BC=DA
∴ABCD是平行四边形
∴AB∥DC
∴∠ABM=∠CDN
∵AB=CD
∴Rt△ABM≌Rt△CDN(AAS)
∴AM=CN
∵AE=CF
∴Rt△AEM≌Rt△CFN(HL)
∴∠AEM=∠CFN
∴∠AEB=∠CFD(与上面角互补关系)
∵AB=CD,∠ABE=∠CDF
∴△ABE≌△CDF(AAS)
∴BE=DF
∴BE+EF=DF+EF
即BF=DE
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Rudy繁歌
2013-01-02
知道答主
回答量:47
采纳率:0%
帮助的人:13万
展开全部
先看这个平行四边形被分成两个完全一样的三角形,两个三角形又从同样的两个点分割,所以BF=DE
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
手机用户72742
2013-01-02 · TA获得超过127个赞
知道答主
回答量:459
采纳率:0%
帮助的人:108万
展开全部

作垂直  三角形ANE和三角形CMF  直角三角形 HL

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式