1/(x4+1)的不定积分
设1\(x^4+1)
=(ax+b)\[x^2+2^(1\2)x+1]+(cx+d)\[x^2-2^(1\2)x+1]
则a+c=0 b+d+2^(1\2)(c-a)=0
a+c+2^(1\2)(d-b)=0 b+d=1
a=2^(1\2)\4 c=-2^(1\2)\4 b=d=1\2
∴1\(x^4+1)=[2^(1\2)\8]*{[2x+2*2^(1\2)]\[x^2+2^(1\2)x+1]
-[2x-2*2^(1\2)]\[x^2-2^(1\2)x+1]}
=[2^(1\2)\8]*{[2x+2^(1\2)]\[x^2+2^(1\2)x+1]
-[2x-2^(1\2)]\[x^2-2^(1\2)x+1]}+
1\4{[x+2^(1\2)\2]^2+1\2}+1\4{[x-2^(1\2)\2]^2+1\2}
∴∫dx\(x^4+1)
=[2^(1\2)\8]*In{[x^2+2^(1\2)x+1]\[x^2-2^(1\2)x+1]}
+[2^(1\2)\4]*{arctan[2^(1\2)x+1]+arctan[2^(1\2)x-1]}
+C
=[2^(1\2)\8]*In{[x^2+2^(1\2)x+1]\[x^2-2^(1\2)x+1]}
+[2^(1\2)\4]*arctan[2^(1\2)x\(1-x^2)]+C
扩展资料:
分部积分法的实质是:将所求积分化为两个积分之差,积分容易者先积分。实际上是两次积分。
有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和.可见问题转化为计算真分式的积分.
可以证明,任何真分式总能分解为部分分式之和。
∫ x²/(1+x^4) dx
=(1/2)∫ (x²-1+x²+1)/(1+x^4) dx
=(1/2)∫ (x²-1)/(1+x^4) dx + (1/2)∫ (x²+1)/(1+x^4) dx
分子分同除以x²
=(1/2)∫ (1-1/x²)/(1/x²+x²) dx + (1/2)∫ (1+1/x²)/(1/x²+x²) dx
分子放到微分之后
=(1/2)∫ 1/(1/x²+x²) d(x+1/x) + (1/2)∫ 1/(1/x²+x²) d(x-1/x)
=(1/2)∫ 1/(1/x²+x²+2-2) d(x+1/x) + (1/2)∫ 1/(1/x²+x²-2+2) d(x-1/x)
=(1/2)∫ 1/[(x+1/x)²-2] d(x+1/x) + (1/2)∫ 1/[(x-1/x)²+2] d(x-1/x)
=(√2/8)ln|(x+1/x-√2)/(x+1/x+√2)| + (√2/4)arctan[(x-1/x)/√2] + C
=(√2/8)ln|(x²+1-√2x)/(x²+1+√2x)| + (√2/4)arctan[(x-1/x)/√2] + C
扩展资料:
对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。
函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。
参考资料来源:百度百科——积分
=1/2*[1/(1-x²)+1/(1+x²)]
=1/2*1/(1+x)(1-x)+1/2*1/(1+x²)
=1/4[1/(1-x)+1/(1+x)]+1/2*1/(1+x²)
所以原式=1/4*ln|1-x²)+1/2*arctanx+C
广告 您可能关注的内容 |