已知数列an满足a1=1/2,an=an-1/(-1)^n*an-1-2.(n>=2,n属于N+).
(1)试判断数列(1/an+(-1)^n)是否为等比数列,说明理由i(2)设bn=1/an^2,求数列bn的前n项和Sn。(3)设cn=an*sin(2*n-1)*π/2...
(1)试判断数列(1/an+(-1)^n)是否为等比数列,说明理由i
(2)设bn=1/an^2,求数列bn的前n项和Sn。
(3)设cn=an*sin(2*n-1)*π/2,数列cn的前n项和Tn。求证:对任意的n属于N+,Tn<2 展开
(2)设bn=1/an^2,求数列bn的前n项和Sn。
(3)设cn=an*sin(2*n-1)*π/2,数列cn的前n项和Tn。求证:对任意的n属于N+,Tn<2 展开
展开全部
第一题, 两边取倒数,(1/an)+(-1)^n=-2[(-1)^n-1 +1/a(n-1)] 是等比数列
根据第一题,能求出来1/an^2的通项公式为 2^(2n-2) +1 +2^n 利用等比数列求和即可
第三题 注意到sin(2*n-1)*π/2= (-1)^(n-1) 所以cn= 1/(2^(n-1) +1) < 1/2^(n-1)
两边求和,有Tn<1+1/2 +1/2^2 +..... +1/2^(n-1) = 2-1/2^(n-1) <2 成立
根据第一题,能求出来1/an^2的通项公式为 2^(2n-2) +1 +2^n 利用等比数列求和即可
第三题 注意到sin(2*n-1)*π/2= (-1)^(n-1) 所以cn= 1/(2^(n-1) +1) < 1/2^(n-1)
两边求和,有Tn<1+1/2 +1/2^2 +..... +1/2^(n-1) = 2-1/2^(n-1) <2 成立
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询