2个回答
展开全部
记an=n(n+1)=n^2+n
则1乘2+2乘3+3乘4+.....+n(n+1)+(n+2)(n+3)是数列{an}的前n+1项的和S(n+1)
S(n+1)=1乘2+2乘3+3乘4+.....+n(n+1)+(n+2)(n+3)
=(1^2+1)+(2^2+2)+……+[(n+1)^2+(n+1)]
=[1^2+2^2+……+(n+1)^2]+[1+2+……+(n+1)]
=(n+1)(n+2)(2n+3)/6+(n+1)(n+2)/2
=(n+1)(n+2)(n+3)/3
注: 1^2+2^2+3^2+4^2+5^2+……+n^2=n(n+1)(2n+1)/6
1+2+……+n=n(n+1)]/2
则1乘2+2乘3+3乘4+.....+n(n+1)+(n+2)(n+3)是数列{an}的前n+1项的和S(n+1)
S(n+1)=1乘2+2乘3+3乘4+.....+n(n+1)+(n+2)(n+3)
=(1^2+1)+(2^2+2)+……+[(n+1)^2+(n+1)]
=[1^2+2^2+……+(n+1)^2]+[1+2+……+(n+1)]
=(n+1)(n+2)(2n+3)/6+(n+1)(n+2)/2
=(n+1)(n+2)(n+3)/3
注: 1^2+2^2+3^2+4^2+5^2+……+n^2=n(n+1)(2n+1)/6
1+2+……+n=n(n+1)]/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询