求∫secxdx在【0,π/4】上的定积分
2个回答
展开全部
解:∵∫secxdx=lnIsecx+tanxI+C
∴∫(0,π/4)secxdx=lnIsecx+tanxII(0,π/4)
=lnIsec(π/4)+tan(π/4)I-lnIsec0+tan0I
=ln(1+√2)
∴∫(0,π/4)secxdx=lnIsecx+tanxII(0,π/4)
=lnIsec(π/4)+tan(π/4)I-lnIsec0+tan0I
=ln(1+√2)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫[0,π/4] secxdx
=∫[0,π/4] 1/cosxdx
=∫[0,π/4] cosx/cos^2xdx
=∫[0,π/4] 1/(1-sin^2x)dsinx
=1/2∫[0,π/4] [1/(1-sinx)+1/(1+sinx)]dsinx
=1/2[-ln(1-sinx)+ln(1+sinx)] [0,π/4]
=1/2[ln(1+√2/2)-ln(1-√2/2)]
=1/2ln[(2+√2)/(2-√2)]
=√2+1
=∫[0,π/4] 1/cosxdx
=∫[0,π/4] cosx/cos^2xdx
=∫[0,π/4] 1/(1-sin^2x)dsinx
=1/2∫[0,π/4] [1/(1-sinx)+1/(1+sinx)]dsinx
=1/2[-ln(1-sinx)+ln(1+sinx)] [0,π/4]
=1/2[ln(1+√2/2)-ln(1-√2/2)]
=1/2ln[(2+√2)/(2-√2)]
=√2+1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询