应用格林公式求∫xy^2dy-x^2ydx,其中L是上半圆周x^2+y^2=a从(a,0) 到(-a,0) 的一段.

丘冷萱Ad
2013-01-04 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3992万
展开全部
补线段L1:y=0,x:-a→a
则L+L1为封闭曲线,可以用格林公式
∮(L+L1) xy²dy-x²ydx
=∫∫ (y²+x²) dxdy
=∫[0→2π]dθ ∫[0→a] r³ dr
=2π(1/4)r^4 |[0→a]
=(1/2)πa^4

下面计算所补线段上的积分
∫(L1) xy²dy-x²ydx=0

因此:原积分=(1/2)πa^4-0=(1/2)πa^4

【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。
匿名用户
2013-01-04
展开全部
补成封闭曲线后再做。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式