3个回答
展开全部
这属于总结规律的题,每一项的分子都为连续整数的平方,分母都为相差为2的连续整数相乘
第一项=4/3=(2^2)/3=2/1*2/3
第二项=9/8=(3^2)/8=3/2*3/4
以此类推
倒数第二项=(99^2)/9800=99/98*99/100
倒数第一项=(100^2)/9999=100/99*100/101
原式=2/1*2/3*3/2*3/4*4/3*4/5*5/4*5/6*…*99/98*99/100*100/99*100/101
上式从第二项开始前后可以消掉
所以化简=2/1*100/101=200/101
第一项=4/3=(2^2)/3=2/1*2/3
第二项=9/8=(3^2)/8=3/2*3/4
以此类推
倒数第二项=(99^2)/9800=99/98*99/100
倒数第一项=(100^2)/9999=100/99*100/101
原式=2/1*2/3*3/2*3/4*4/3*4/5*5/4*5/6*…*99/98*99/100*100/99*100/101
上式从第二项开始前后可以消掉
所以化简=2/1*100/101=200/101
展开全部
解:(1)12×4+
14×6+
16×8+…+
198×100,
=12(12-14)+12(14-16)+12(16-18)+…+12(198-1100),
=12(12-14+14-16+16-18+…+198-1100),
=12(12-1100),
=12×98200,
=49200;
14×6+
16×8+…+
198×100,
=12(12-14)+12(14-16)+12(16-18)+…+12(198-1100),
=12(12-14+14-16+16-18+…+198-1100),
=12(12-1100),
=12×98200,
=49200;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这是数学问题吧
追问
嗯
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |