如图在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.己知AC=15,cosA=3 /5
展开全部
因为三角形ABC是直角三角形。D是斜边AB中点。所以,AD=DB=CD。cosA=3/5=AC/AB.因为AC=15,所以AB=AC/cosA=25.CD=AB/2=12.5.
因为AD=DB=CD,所以角DCB=角CBD=1/2角CDA。因为cosA=sin角CBD=3/5。因为cos2A=cosA*cosA-sinA*sinA。因为sin角DBE=cos角ABC=4/5所以cos角EDB=cos角ADC=4/5*4/5-3/5*3/5=7/25。
因为AD=DB=CD,所以角DCB=角CBD=1/2角CDA。因为cosA=sin角CBD=3/5。因为cos2A=cosA*cosA-sinA*sinA。因为sin角DBE=cos角ABC=4/5所以cos角EDB=cos角ADC=4/5*4/5-3/5*3/5=7/25。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询