如图,已知△ABC是等腰直角三角形,∩BAC=90°,BE是∩ABC的平分线,DE⊥BC,垂足为D。
(1)请你写出图中所有的等腰三角形(2)请你判断AD与BE是否垂直,并说明理由。(3)如果BC=10,求AB+AE的长...
(1)请你写出图中所有的等腰三角形
(2)请你判断AD与BE是否垂直,并说明理由。
(3)如果BC=10,求AB+AE的长 展开
(2)请你判断AD与BE是否垂直,并说明理由。
(3)如果BC=10,求AB+AE的长 展开
1个回答
展开全部
分析
(1)根据等腰三角形的定义判断,△ABC等腰直角三角形,BE为角平分线;可证△ABE≌△DBE,即AB=BD,AE=DE,所以△ABD和△ADE均为等腰三角形;∠C=45°,ED⊥DC,△EDC也符合题意,综上所述符合题意的三角形为有△ABC,△ABD,△ADE,△EDC;
(2)BE是∠ABC的平分线,DE⊥BC,根据角平分线定理可知△ABE关于BE与△DBE对称.可得出BE⊥AD.
(3)根据(2),可知△ABE关于BE与△DBE对称,且△DEC为等腰直角三角形,可推出AB+AE=BD+DC=BC=10.
解:(1)△ABC,△ABD,△ADE,△EDC.
(2)AD与BE垂直.
证明:由BE为∠ABC的平分线,
知∠ABE=∠DBE,∠BAE=∠BDE=90°,BE=BE,
∴△ABE沿BE折叠,一定与△DBE重合.
∴A、D是对称点,
∴AD⊥BE.
(3)∵BE是∠ABC的平分线,DE⊥BC,EA⊥AB,
∴AE=DE,
又∵BE=BE
∴Rt△ABE≌Rt△DBE(HL),
∴AB=BD,
又△ABC是等腰直角三角形,∠BAC=90°,
∴∠C=45°,又ED⊥BC,
∴△DCE为等腰直角三角形,
∴DE=DC,
即AB+AE=BD+DC=BC=10.
(1)根据等腰三角形的定义判断,△ABC等腰直角三角形,BE为角平分线;可证△ABE≌△DBE,即AB=BD,AE=DE,所以△ABD和△ADE均为等腰三角形;∠C=45°,ED⊥DC,△EDC也符合题意,综上所述符合题意的三角形为有△ABC,△ABD,△ADE,△EDC;
(2)BE是∠ABC的平分线,DE⊥BC,根据角平分线定理可知△ABE关于BE与△DBE对称.可得出BE⊥AD.
(3)根据(2),可知△ABE关于BE与△DBE对称,且△DEC为等腰直角三角形,可推出AB+AE=BD+DC=BC=10.
解:(1)△ABC,△ABD,△ADE,△EDC.
(2)AD与BE垂直.
证明:由BE为∠ABC的平分线,
知∠ABE=∠DBE,∠BAE=∠BDE=90°,BE=BE,
∴△ABE沿BE折叠,一定与△DBE重合.
∴A、D是对称点,
∴AD⊥BE.
(3)∵BE是∠ABC的平分线,DE⊥BC,EA⊥AB,
∴AE=DE,
又∵BE=BE
∴Rt△ABE≌Rt△DBE(HL),
∴AB=BD,
又△ABC是等腰直角三角形,∠BAC=90°,
∴∠C=45°,又ED⊥BC,
∴△DCE为等腰直角三角形,
∴DE=DC,
即AB+AE=BD+DC=BC=10.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询