已知数列{an}满足a1=1/2,且an=(1/2^n)a(n-1),求an
展开全部
an=(1/2ⁿ)a(n-1)
an/a(n-1)=1/2ⁿ
a(n-1)/a(n-2)=1/2^(n-1)
…………
a2/a1=1/2²
累乘
an/a1=(1/2²)(1/2³)...(1/2ⁿ)
an=a1(1/2²)(1/2³)...(1/2ⁿ)
=(1/2)(1/2²)(1/2³)...(1/2ⁿ)
=(1/2)^(1+2+...+n)
=(1/2)^[n(n+1)/2]
=1/2^[n(n+1)/2]
数列{an}的通项公式为an=1/2^[n(n+1)/2]
an/a(n-1)=1/2ⁿ
a(n-1)/a(n-2)=1/2^(n-1)
…………
a2/a1=1/2²
累乘
an/a1=(1/2²)(1/2³)...(1/2ⁿ)
an=a1(1/2²)(1/2³)...(1/2ⁿ)
=(1/2)(1/2²)(1/2³)...(1/2ⁿ)
=(1/2)^(1+2+...+n)
=(1/2)^[n(n+1)/2]
=1/2^[n(n+1)/2]
数列{an}的通项公式为an=1/2^[n(n+1)/2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询