如图,AB解析式为y=1/3x+1,C(0,-1),直线MN交AB于M点,交AC与N点,MH⊥BC,交y轴于H点,若BM=CN,求PH的值
展开全部
似乎少一个条件。
A(-3, 0), B(0,1), C(0. -1)
MN: y = kx + b
P(0. b)
AC: x/(-3) + y/(-1) = 1, y = -x/3 - 1
与MN联立: N(-3(b+ 1)/(3k + 1), (b - 3k)/(3k + 1))
MN与AB联立: M(3(1 - b)/(3k - 1), (3k - b)/(3k - 1)), H(0, (3k - b)/(3k - 1))
BM² = CN²
BM² = 10(b-1)²/(3k -1)²
CN² = 10(b + 1)²/(3k + 1)²
(b + 1)/(3k + 1) = ±(b - 1)/(3k - 1)
(i)(b + 1)/(3k + 1) = (b - 1)/(3k - 1)
b = 3k
P(0, 3k), H(0, 0)
PH = 3|k|
(ii)(b + 1)/(3k + 1) = -(b - 1)/(3k - 1)
b = 1/(3k)
P(0, 1/(3k)), H(0, (3k + 1)/(3k))
PH = (3k + 1)/(3k) - 1/(3k) = 1
A(-3, 0), B(0,1), C(0. -1)
MN: y = kx + b
P(0. b)
AC: x/(-3) + y/(-1) = 1, y = -x/3 - 1
与MN联立: N(-3(b+ 1)/(3k + 1), (b - 3k)/(3k + 1))
MN与AB联立: M(3(1 - b)/(3k - 1), (3k - b)/(3k - 1)), H(0, (3k - b)/(3k - 1))
BM² = CN²
BM² = 10(b-1)²/(3k -1)²
CN² = 10(b + 1)²/(3k + 1)²
(b + 1)/(3k + 1) = ±(b - 1)/(3k - 1)
(i)(b + 1)/(3k + 1) = (b - 1)/(3k - 1)
b = 3k
P(0, 3k), H(0, 0)
PH = 3|k|
(ii)(b + 1)/(3k + 1) = -(b - 1)/(3k - 1)
b = 1/(3k)
P(0, 1/(3k)), H(0, (3k + 1)/(3k))
PH = (3k + 1)/(3k) - 1/(3k) = 1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询