定积分题,求解答。
2个回答
展开全部
y = x² = √x
x = 0或x = 1
交点(0, 0), A(1,1)
所围区域在第一象限, y = √x在上,y = x²在下
S = ∫¹₀(√x - x²)dx
= [(2/3)x^(3/2) - x³/3]|¹₀
= 2/3 - 1/3
= 1/3
0 <x < 1: 绕轴旋转的形状在x处为圆环,外径为√x, 内径为x², 截面积π(x - x⁴)
V = ∫¹₀π(x - x⁴)dx
= π(x²/2 - x⁵/5)|¹₀
= π(1/2 - 1/5)
= 3π/10
x = 0或x = 1
交点(0, 0), A(1,1)
所围区域在第一象限, y = √x在上,y = x²在下
S = ∫¹₀(√x - x²)dx
= [(2/3)x^(3/2) - x³/3]|¹₀
= 2/3 - 1/3
= 1/3
0 <x < 1: 绕轴旋转的形状在x处为圆环,外径为√x, 内径为x², 截面积π(x - x⁴)
V = ∫¹₀π(x - x⁴)dx
= π(x²/2 - x⁵/5)|¹₀
= π(1/2 - 1/5)
= 3π/10
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询