如图1,在△ABC中,AD是BAC的平分线M是BC的中点,过M作ME‖AD,交BA的延长线于E,交AC于F,求证:BE=CF
展开全部
证明:在EM延长线上取点H,使MH=MF,过点C作CG∥ME交BE的延长线于点G,连接BF、CH
∵AD平分∠BAC
∴∠BAD=∠CAD
∵MN∥AD
∴∠AEF=∠BAD,AFE=∠CAD
∴∠AEF=∠AFE
∵M是BC的中点
∴BM=CM
∵MH=MF
∴平行四边形FBHC
∴BH∥AC,BH=CF
∴∠BHE=∠AFE
∴∠BHE=∠AEF
∴BH=BE
∴BE=CF
∵CG∥AD
∴∠G=∠AEF,∠ACG=∠AFE
∴∠G=∠ACG
∴AG=AC
∴BG=AB+AG=AB+AC
∵MN∥AD,CG∥AD
∴CG∥MN
又∵M是BC的中点
∴中位线ME
∴BE=BG/2=(AB+BC)/2
∴BE=CF
纯手打,求最佳。
∵AD平分∠BAC
∴∠BAD=∠CAD
∵MN∥AD
∴∠AEF=∠BAD,AFE=∠CAD
∴∠AEF=∠AFE
∵M是BC的中点
∴BM=CM
∵MH=MF
∴平行四边形FBHC
∴BH∥AC,BH=CF
∴∠BHE=∠AFE
∴∠BHE=∠AEF
∴BH=BE
∴BE=CF
∵CG∥AD
∴∠G=∠AEF,∠ACG=∠AFE
∴∠G=∠ACG
∴AG=AC
∴BG=AB+AG=AB+AC
∵MN∥AD,CG∥AD
∴CG∥MN
又∵M是BC的中点
∴中位线ME
∴BE=BG/2=(AB+BC)/2
∴BE=CF
纯手打,求最佳。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询