设a0+a1 /2+....+an /(n+1)=0 证明多项式f(x)=a0+a1x+....+anx^n在(0,1)内至少有一个零点。a旁数是角标

 我来答
tllau38
高粉答主

2013-01-08 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2.4亿
展开全部
a0+a1/2+....+an /(n+1)=0
f(x)=a0+a1x+....+anx^n
∫(0->1)f(x)dx
=∫(0->1) [a0+a1x+....+anx^n] dx
=a0+a1/2+....+an/(n+1)
=0
f(x)在(0,1)内至少有一个零点
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式