具体回答如下:
∫(1+sinx)/(1+cosx)dx
=∫1/(1+cosx)dx + ∫sinx/(1+cosx)dx
∫sinx/(1+cosx)dx
= -∫1/(1+cosx)d(cosx)
= -∫1/(1+cosx)d(cosx+1)
= -ln(1+cosx)
不定积分的意义:
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。
若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。