化简(sin^4+cos^4+sin^2xcos^2x)/(2-sin2x)
2个回答
展开全部
(sin^4+cos^4+sin^2xcos^2x)/(2-sin2x)
=[(sin^2x+cos^2x)^2-sin^2xcos^2x]/2(sin^2x+cos^2x-sinxcosx)
=[(sin^2x+cos^2x)-sinxcosx][(sin^2x+cos^2x)+sinxcosx]//2(sin^2x+cos^2x-sinxcosx)
=[(sin^2x+cos^2x)+sinxcosx]/2
=[1+(1/2)sin2x]/2
=(2+sin2x)/4
=[(sin^2x+cos^2x)^2-sin^2xcos^2x]/2(sin^2x+cos^2x-sinxcosx)
=[(sin^2x+cos^2x)-sinxcosx][(sin^2x+cos^2x)+sinxcosx]//2(sin^2x+cos^2x-sinxcosx)
=[(sin^2x+cos^2x)+sinxcosx]/2
=[1+(1/2)sin2x]/2
=(2+sin2x)/4
来自:求助得到的回答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询