求积分 ∫(arctanx)/(x^2(x^2+1))dx

tllau38
高粉答主

2013-01-09 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
∫(arctanx)/(x^2(x^2+1))dx
let
x=tana
dx = (seca)^2da
∫(arctanx)/(x^2(x^2+1))dx
= ∫ [a/(tana)^2] da
=-∫ ad(cota+a)
= -a(cota+a) + ∫ (cota+a)da
= -a(cota+a) + ln|sina| + a^2/2 + C
=-arctanx( 1/x + arctanx) + ln|x/√(1+x^2) | + (arctanx)^2/2 + C
=-(1/x)arctanx -(arctanx)^2/2 +ln|x/√(1+x^2) |+ C
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式