
求二阶微分方程(x^2lnx)y''-xy'+y=0的通解,要详细过程!
1个回答
展开全部
y=x是解.用常数变易法:
设y=cx.y'=c+c'x.y''=c"x+2c'
代入: x^2lnx(c"x+2c')-x(c+c'x)+cx=0,
x^2lnx(c"x+2c')-c'x^2=0.
xlnxc"+(2lnx-1)c'=0,
c'=lnlnx-2lnx+C1.
c=∫lnlnxdx-2xlnx+2x+C1x+C2
通解为:y=x(∫lnlnxdx-2xlnx+2x+C1x+C2)
设y=cx.y'=c+c'x.y''=c"x+2c'
代入: x^2lnx(c"x+2c')-x(c+c'x)+cx=0,
x^2lnx(c"x+2c')-c'x^2=0.
xlnxc"+(2lnx-1)c'=0,
c'=lnlnx-2lnx+C1.
c=∫lnlnxdx-2xlnx+2x+C1x+C2
通解为:y=x(∫lnlnxdx-2xlnx+2x+C1x+C2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |