将矩阵化简为行最简形矩阵有什么技巧,或者一般有什么特定的步骤么?

 我来答
小青清爱生活
高粉答主

2020-02-22 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:2672
采纳率:100%
帮助的人:67.9万
展开全部

对调两行;以非零数k乘以某一行的所有元素;把某一行所有元素的k倍加到另一行对应元素上去。

下列三种变换称为矩阵的行初等变换

(1)对调两行;

(2)以非零数k乘以某一行的所有元素;

(3)把某一行所有元素的k倍加到另一行对应元素上去。

行最简形矩阵是由方程组唯一确定的,行阶梯形矩阵的行数也是由方程组唯一确定的。

将定义中的“行”换成“列”,即得到矩阵的初等列变换的定义。矩阵的初等行变换与矩阵的初等列变换,统称为矩阵的初等变换。

扩展资料:

将矩阵化简为行最简形矩阵的定理:

1、任一矩阵可经过有限次初等行变换化成阶梯形矩阵;

2、任一矩阵可经过有限次初等行变换化成行最简形矩阵;

矩阵在经过初等行变换化为最简形矩阵后,再经过初等列变换,还可以化为最简形矩阵,因此,任一矩阵可经过有限次初等变换化成标准形矩阵。

609202101
推荐于2017-09-29 · TA获得超过7305个赞
知道小有建树答主
回答量:799
采纳率:92%
帮助的人:83.1万
展开全部
将矩阵化简为行最简形矩阵有多种化简方式,一般都是用可逆矩阵进行行列变换,在数值计算中,还经常用到正交型的变换与三角形的变换。
1、矩阵的QR分解:Q是一个正交阵,R是上三角矩阵。矩阵的QR分解可以有两种方法。
其一是Gram-Schmidt正交化方法。该方法的好处是,不论分解了多少步,都可以中途停止。利用这一方法得到的修正的Gram-Schmidt正交化方法,也可以算是Arnoldi方法是矩阵快速求特征值的方法。相关知识可参阅有关Krynov子空间的知识。
其二是Household正交三角化方法,该方法的本质是利用镜像变换算子将原矩阵下三角部分化为0。最后可以得到一个上三角矩阵。方法的缺点是不能中途停止。
2、矩阵的SVD分解:可将一个mxn矩阵通过乘以正交矩阵化简为单位阵和零矩阵的拼接。SVD(singular value decomposition),顾名思义奇异值分解,是适用于任何矩阵的一种分解。在求解低秩矩阵逼近时应用广泛。
3、Gauss消元法。这也是矩阵化简为标准型的一种方法。最后可以得到一个上三角矩阵。用途是求解线性方程组。优点是计算简便,缺点是稳定性分析过于复杂。
4、Schur分解:利用酉相似变换将一个复矩阵变换为一个上三角矩阵。在复矩阵是厄米矩阵的时候,最后可以得到一个对角矩阵。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lry31383
高粉答主

2013-01-09 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式