已知:关于x的方程2x²+kx-1=0 1、求证:方程有两个不相等的实数根 2、
已知:关于x的方程2x²+kx-1=01、求证:方程有两个不相等的实数根2、若方程的一个根是-1,求另一个根及k值某商场销售一批名牌衬衫,平均每天可售出20件,...
已知:关于x的方程2x²+kx-1=0
1、求证:方程有两个不相等的实数根
2、若方程的一个根是-1,求另一个根及k值
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫1元,商场平均每天可多销售12件,若商场平均每天要盈利1200元,又要使顾客获得实惠,每件衬衫要降价多少元? 展开
1、求证:方程有两个不相等的实数根
2、若方程的一个根是-1,求另一个根及k值
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫1元,商场平均每天可多销售12件,若商场平均每天要盈利1200元,又要使顾客获得实惠,每件衬衫要降价多少元? 展开
2个回答
展开全部
1证明:因为△=k^2-4*2*(-1)=k^2+8>0
所以方程有两个不相等的实数根
2,解:把x=-1代入得2-k-1=0
∴k=1
而两根之积是-1/2,
所以另一个根是(-1/2,)÷(-1)=1/2,
设每件衬衫要降价x元
则(40-x)(20+12x)=1200
x≈0.89≈1
答:每件衬衫要降价1元
(40-x)(20+12x)=-12(x-115/6)^2+5208又1/3
即当x=115/6时,每天有最大的盈利
取整数x=19,每天有最大的盈利5208元。
所以方程有两个不相等的实数根
2,解:把x=-1代入得2-k-1=0
∴k=1
而两根之积是-1/2,
所以另一个根是(-1/2,)÷(-1)=1/2,
设每件衬衫要降价x元
则(40-x)(20+12x)=1200
x≈0.89≈1
答:每件衬衫要降价1元
(40-x)(20+12x)=-12(x-115/6)^2+5208又1/3
即当x=115/6时,每天有最大的盈利
取整数x=19,每天有最大的盈利5208元。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询