高数考试 求大神借这4题 感激不尽
4个回答
展开全部
16
= 2sin²(x/2)/[2xsin(x/2)cos(x/2)]
= sin(x/2)/[xcos(x/2)]
= (1/2)sin(x/2)/[(x/2)cos(x/2)]
极限为1/2
17.
y' = [e^(-x/2)](-1/2)cos3x + [e^(-x/2)](-sin3x)*3
= -[(1/2)cos3x + 3sin3x][e^(-x/2)]
18.
= -(1/2)∫¹₀[e^(-x²)]d(-x²)
= (-1/2)e^(-x²)|¹₀
= (e - 1/e)/2
19.
= ∫¹₀(√x - x²)dx
= [(2/3)x^(3/2) - x³/3)|¹₀
= 2/3 - 1/3
= 1/3
= 2sin²(x/2)/[2xsin(x/2)cos(x/2)]
= sin(x/2)/[xcos(x/2)]
= (1/2)sin(x/2)/[(x/2)cos(x/2)]
极限为1/2
17.
y' = [e^(-x/2)](-1/2)cos3x + [e^(-x/2)](-sin3x)*3
= -[(1/2)cos3x + 3sin3x][e^(-x/2)]
18.
= -(1/2)∫¹₀[e^(-x²)]d(-x²)
= (-1/2)e^(-x²)|¹₀
= (e - 1/e)/2
19.
= ∫¹₀(√x - x²)dx
= [(2/3)x^(3/2) - x³/3)|¹₀
= 2/3 - 1/3
= 1/3
展开全部
16,利用等价无穷小:=lim(x^2/2)/x^2=1/2
17. y'=(-1/2)e^(-x/2)cos3x-3e^(-x/2)sin3x
20.=(-1/2)∫(0,1)e^(-x^2)de^(-x^2)=(-1/2)e^(-x^2)|(0,1)=(1/2)(1-1/e)
21,交点为(0,0)(1,1)
S=∫(0,1)(√x-x^2)dx
=[(2/3)x^(3/2)-x^3/3](0,1)
=1/3
17. y'=(-1/2)e^(-x/2)cos3x-3e^(-x/2)sin3x
20.=(-1/2)∫(0,1)e^(-x^2)de^(-x^2)=(-1/2)e^(-x^2)|(0,1)=(1/2)(1-1/e)
21,交点为(0,0)(1,1)
S=∫(0,1)(√x-x^2)dx
=[(2/3)x^(3/2)-x^3/3](0,1)
=1/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
17题5/2cos3X乘e的负二分之X
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |