f(x)=2sin(x/3 一兀/6),x属于R 求f(0)
设a,B属于[0,兀/2],f(3a+兀/2)=10/13,f(3B+2兀)=6/5求sin(a+B)...
设a,B属于[0,兀/2],f(3a+兀/2)=10/13,f(3B+2兀)=6/5 求sin(a+B)
展开
1个回答
展开全部
f(0)=2sin[(0/3)-π/6]
=2sin(-π/6)
=-1
=2sin(-π/6)
=-1
追问
设a,B属于[0,兀/2],f(3a+兀/2)=10/13,f(3B+2兀)=6/5 求sin(a+B)
追答
f(3a+π/2)=2sin(a+π/6-π/6)=2sina=10/13
则:
sina=5/13,
因:a∈[0,π/2],则:cosa=12/13
f(3b+2π)=2sin(b+2π/3-π/6)=2sin(b+π/2)=2cosb=6/5
则:
cosb=3/5
因:b∈[0,π/2],则:sinb=4/5
sin(a+b)=sinacosb+cosasinb=63/65
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询