单调增加的充要条件是什么?是导≥0,还是导数>0,
2个回答
展开全部
f(x)[a,b]上连续,在(a,b)上可导。f’(x)>=0且在(a,b)的任一子区间内不恒为0。这个函数就是单调增。
同样的 f(x)在[a,b]上连续,在(a,b)上可导,函数单调增。也可以推出来f'(x)大于0.
不能说导数大于0函数就单调增,或者函数单调增加,导数就一定大于0,。
同样的 f(x)在[a,b]上连续,在(a,b)上可导,函数单调增。也可以推出来f'(x)大于0.
不能说导数大于0函数就单调增,或者函数单调增加,导数就一定大于0,。
追问
同样的 f(x)在[a,b]上连续,在(a,b)上可导,函数单调增。也可以推出来f'(x)大于0.
请问是“也可推出f'(x)大于零”还是“也可推出f'(x)大于等于零”
追答
大于等于零
如果是严格单调就是大于0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |