已知a1=2,点(an,a(n+1))在函数f(x)=x^2+2x的图像上,其中n=1,2,3.......,求an的通项公式
4个回答
展开全部
a(n+1)=(an)^2+2an
a(n+1)+1=(an)^2+2an+1=(an+1)^2
设Tn=an+1
则:T(n+1)=(Tn)^2
T1=a1+1=3
T2=(T1)^2=3^2
T3=(T2)^2=3^(2^2)
...
Tn=3^(2^(n-1))
an=Tn-1=3^(2^(n-1))-1
a(n+1)+1=(an)^2+2an+1=(an+1)^2
设Tn=an+1
则:T(n+1)=(Tn)^2
T1=a1+1=3
T2=(T1)^2=3^2
T3=(T2)^2=3^(2^2)
...
Tn=3^(2^(n-1))
an=Tn-1=3^(2^(n-1))-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=x^2+2x得y+1=(x+1)^2
代入点得:
a(n+1)+1=(an+1)^2
因为a1=2>0所以
ln[a(n+1)+1]=ln[(an+1)^2]=2ln(an+1)
即:ln(an+1)是等比2的数列
得:ln(an+1)=2^(n-1)*ln(a1+1)=2^(n-1)*ln3=ln{3^[2^(n-1)]
看评论
代入点得:
a(n+1)+1=(an+1)^2
因为a1=2>0所以
ln[a(n+1)+1]=ln[(an+1)^2]=2ln(an+1)
即:ln(an+1)是等比2的数列
得:ln(an+1)=2^(n-1)*ln(a1+1)=2^(n-1)*ln3=ln{3^[2^(n-1)]
看评论
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
an=3^2^(n-1)-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询