二元函数偏导数存在时全微分存在的( )条件
展开全部
必要不充分。
在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。
扩展资料
如果函数z=f(x, y) 在(x, y)处的全增量
Δz=f(x+Δx,y+Δy)-f(x,y)
可以表示为
Δz=AΔx+BΔy+o(ρ),
其中A、B不依赖于Δx, Δy,仅与x,y有关,ρ趋近于0(ρ=√[(Δx)2+(Δy)2]),此时称函数z=f(x, y)在点(x,y)处可微分,AΔx+BΔy称为函数z=f(x, y)在点(x, y)处的全微分,记为dz即
dz=AΔx +BΔy
该表达式称为函数z=f(x, y) 在(x, y)处(关于Δx, Δy)的全微分。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询