已知函数f(x)=x^3+ax^2+bx+c在x=-1与x=2处取得极值。

(1)求a,b的值(2)求函数f(x)的单调区间... (1)求a,b的值
(2)求函数f(x)的单调区间
展开
xiao金666
2013-01-10 · TA获得超过714个赞
知道小有建树答主
回答量:354
采纳率:0%
帮助的人:404万
展开全部
f'(x)=3x^2+2ax+b
极值点的导数为0
f'(-1)=3-2a+b=0
f'(2)=12+4a+b=0
a=-3/2,b=-6
f(x)=x^3-3/2x^2-6x+c
f'(x)=3x^2-3x-6=3(x^2-x-2)=3(x+1)(x-2)
f'(x)<0,-1<x<2
所以f(x)在(-1,2)单调递减,在(-∞,-1),(2,+∞)单调递加
更多追问追答
追问
f'(x)=3x^2+2ax+b,a=-3/2,是不是后面带入错了?
追答
?哪里错了?
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
百度网友5793aa894b
2013-01-10 · TA获得超过2.4万个赞
知道大有可为答主
回答量:1.4万
采纳率:45%
帮助的人:1亿
展开全部
(1) f'(x)=3x^2+2ax+b
-1+2=-2a/3, (-1)*2=b/3
a=-3/2,b=-6
(2)f'(x)=3x^2-(3/2)x-6<0 =>-1<x<2
f'(x)=3x^2-(3/2)x-6>0 =>x<-1或 X>2
函数f(x)的单调减区间 (-1,2)
函数f(x)的单调增区间 (-∞,-1]∪[2+∞)
追问
f'(x)=3x^2+2ax+b,a=-3/2,是不是后面带入错了?
追答
没错
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
表燕况朋义
2020-06-25 · TA获得超过3651个赞
知道大有可为答主
回答量:3007
采纳率:33%
帮助的人:406万
展开全部
f'(x)=3x^2+2ax+b
极值点的导数为0
f'(-1)=3-2a+b=0
f'(2)=12+4a+b=0
a=-3/2,b=-6
f(x)=x^3-3/2x^2-6x+c
f'(x)=3x^2-3x-6=3(x^2-x-2)=3(x+1)(x-2)
f'(x)<0,-1<x<2
所以f(x)在(-1,2)单调递减,在(-∞,-1),(2,+∞)单调递加
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式