
设p,q均为自然数,且p/q=1-1/2+1/3-1/4+1/5......-1/18+1/19,求证:29lp
1个回答
展开全部
先把减号都变成加号:
1-1/2+1/3-1/4+1/5+...-1/18+1/19
= 1+1/2+1/3+1/4+1/5+...+1/18+1/19-2·(1/2+1/4+...+1/18)
= 1+1/2+1/3+1/4+1/5+...+1/18+1/19-(1+1/2+...+1/9)
= 1/10+1/11+...1/18+1/19
两两配对:
1/10+1/19 = 29/(10·19)
1/11+1/18 = 29/(11·18)
1/12+1/17 = 29/(12·17)
1/13+1/16 = 29/(13·16)
1/14+1/15 = 29/(14·15)
分子可以提出29, 余下的分数通分, 易见分母不被29整除.
1-1/2+1/3-1/4+1/5+...-1/18+1/19
= 1+1/2+1/3+1/4+1/5+...+1/18+1/19-2·(1/2+1/4+...+1/18)
= 1+1/2+1/3+1/4+1/5+...+1/18+1/19-(1+1/2+...+1/9)
= 1/10+1/11+...1/18+1/19
两两配对:
1/10+1/19 = 29/(10·19)
1/11+1/18 = 29/(11·18)
1/12+1/17 = 29/(12·17)
1/13+1/16 = 29/(13·16)
1/14+1/15 = 29/(14·15)
分子可以提出29, 余下的分数通分, 易见分母不被29整除.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询