∫dx/(1-e^x)^2 不定积分求解!
5个回答
展开全部
∫dx/(1-e^x)^2
=∫dx/[1-2e^x+e^(2x)]
=∫e^(-x)*dx/[e^(-x)-2+e^x]
=-∫e^(-x)*d(-x)/[e^(-x)-2+e^x]
=-∫d[e^(-x)]/[e^(-x)-2+e^x]
设t=e^(-x)
原式=-∫dt/(t-2+1/t)
=-∫tdt/(t^2-2t+1)
=-∫(t-1+1)dt/(t-1)^2
=-∫dt/(t-1)-∫dt/(t-1)^2
=-ln|t-1|+1/(t-1)+C
=-ln|e^(-x)-1|+1/[e^(-x)-1]+C
=∫dx/[1-2e^x+e^(2x)]
=∫e^(-x)*dx/[e^(-x)-2+e^x]
=-∫e^(-x)*d(-x)/[e^(-x)-2+e^x]
=-∫d[e^(-x)]/[e^(-x)-2+e^x]
设t=e^(-x)
原式=-∫dt/(t-2+1/t)
=-∫tdt/(t^2-2t+1)
=-∫(t-1+1)dt/(t-1)^2
=-∫dt/(t-1)-∫dt/(t-1)^2
=-ln|t-1|+1/(t-1)+C
=-ln|e^(-x)-1|+1/[e^(-x)-1]+C
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令e^x=u,则x=lnu,dx=du/u,代入原式得:
原式=∫du/[u(1-u)²]=∫[1/u-(u-2)/(1-u)²]du=∫[(1/u)+1/(1-u)+1/(1-u)²]du
=∫du/u-∫d(1-u)/(1-u)-∫d(1-u)/(1-u)²=ln∣u∣-ln∣1-u∣+1/(1-u)+C
=x-ln∣1-e^x∣+1/(1-e^x)+C
原式=∫du/[u(1-u)²]=∫[1/u-(u-2)/(1-u)²]du=∫[(1/u)+1/(1-u)+1/(1-u)²]du
=∫du/u-∫d(1-u)/(1-u)-∫d(1-u)/(1-u)²=ln∣u∣-ln∣1-u∣+1/(1-u)+C
=x-ln∣1-e^x∣+1/(1-e^x)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用一下代换e^x=t,就变成有理函数的积分了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询