如图AC⊥BD,O为垂足,是说明AB²+CD²=BC²+AD².
3个回答
展开全部
说明:因为 AC垂直于BD,
所以 四个三角形ABO,BCO,CDO,ADO都是直角三角形,
在直角三角形ABO中,由勾股定理可得:
AB^2=AO^2+BO^2,
同理: CD^2=CO^2+DO^2.
BC^2=BO^2+CO^2
AD^2=AO^2+DO^2
所以 AB^2+CD^2=AO^2+BO^2+CO^2+DO^2,
BC^2+AD^2=BO^2+CO^2+AO^2+DO^2,
所以 AB^2+CD^2=BC^2+AD^2.。
所以 四个三角形ABO,BCO,CDO,ADO都是直角三角形,
在直角三角形ABO中,由勾股定理可得:
AB^2=AO^2+BO^2,
同理: CD^2=CO^2+DO^2.
BC^2=BO^2+CO^2
AD^2=AO^2+DO^2
所以 AB^2+CD^2=AO^2+BO^2+CO^2+DO^2,
BC^2+AD^2=BO^2+CO^2+AO^2+DO^2,
所以 AB^2+CD^2=BC^2+AD^2.。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵AC⊥BD,由勾股定理:
AB²=AO²+BO²
CD²=CO²+DO²
∴AB²+CD²=AO²+BO²+CO²+DO²
又在三角形AOD与BOC中:
AO²+DO²=AD²
BO²+CO²=BC²
故AB²+CD²=BC²+AD²
AB²=AO²+BO²
CD²=CO²+DO²
∴AB²+CD²=AO²+BO²+CO²+DO²
又在三角形AOD与BOC中:
AO²+DO²=AD²
BO²+CO²=BC²
故AB²+CD²=BC²+AD²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询