求解高等数学不定积分题目∫x^2sin2xdx。用分部积分法!
展开全部
你好
∫x^2sin2xdx
=-1/2∫x^2d(cos2x)
=-1/2[cos2x*x^2-∫2x*cos2xdx]
=-1/2[cos2x*x^2-∫xd(sin2x)]
=-1/2[cos2x*x^2-(sin2x*x-∫sin2xdx)]
=-1/2cos2x*x^2+1/2sin2x*x-1/2∫sin2xdx
=-1/2cos2x*x^2+1/2sin2x*x+1/4cos2x+C
【数学辅导团】为您解答,不理解请追问,理解请及时选为满意回答!(*^__^*)谢谢!
∫x^2sin2xdx
=-1/2∫x^2d(cos2x)
=-1/2[cos2x*x^2-∫2x*cos2xdx]
=-1/2[cos2x*x^2-∫xd(sin2x)]
=-1/2[cos2x*x^2-(sin2x*x-∫sin2xdx)]
=-1/2cos2x*x^2+1/2sin2x*x-1/2∫sin2xdx
=-1/2cos2x*x^2+1/2sin2x*x+1/4cos2x+C
【数学辅导团】为您解答,不理解请追问,理解请及时选为满意回答!(*^__^*)谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询