设入1入2是矩阵A的两个不同的特征值对应的特征向量分别为a1a2,则证明a1,A(a1+a2)线性无关的充分必要条件

充分必要条件是入2不等于0... 充分必要条件是入2不等于0 展开
lry31383
高粉答主

2013-01-12 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
设 k1a1+k2A(a1+a2)=0
则 k1a1+k2λ1a1+k2λ2a2=0
即 (k1+k2λ1)a1+k2λ2a2=0
由于属于不同特征值的特征向量线性无关
所以 k1+k2λ1=0
k2λ2=0
此齐次线性方程组只有零解的充分必要条件是λ2≠0
即有 a1,A(a1+a2)线性无关的充分必要条件是λ2≠0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式