高数:设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,试证:对于任意给定的正数a,b,在(0,1)内存在不同的ζ,η,使a/f'(ζ)+b/f'...
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,试证:对于任意给定的正数a,b,在(0,1)内存在不同的ζ,η,使a/f'(ζ)+b/f'(η)=a+b.
提示:利用介值定理,再应用拉格朗日中值定理 展开
提示:利用介值定理,再应用拉格朗日中值定理 展开
展开全部
那里多写了个dx
由积分中值定理:存在a∈(0,1)使:(2/π)[e^f(a)]arctana=1/2,或[e^f(a)]arctana=π/4
设F(x)=arctanxe^f(x),则:F(1)=arctan1e^f(1)=π/4,F(a)=arctanae^f(a)=π/4.
用罗尔定理,存在ζ∈(a,1)(当然ζ∈(0,1)),使:F’(ζ)=0
但F‘(x)=e^f(x)/(1+x^2)+arctanxe^f(x)*f'(x)
代入得:1/(1+ζ^2)+f'(ζ)arctanζ=0
即:(1+ζ^2)f'(ζ)arctanζ=-1
由积分中值定理:存在a∈(0,1)使:(2/π)[e^f(a)]arctana=1/2,或[e^f(a)]arctana=π/4
设F(x)=arctanxe^f(x),则:F(1)=arctan1e^f(1)=π/4,F(a)=arctanae^f(a)=π/4.
用罗尔定理,存在ζ∈(a,1)(当然ζ∈(0,1)),使:F’(ζ)=0
但F‘(x)=e^f(x)/(1+x^2)+arctanxe^f(x)*f'(x)
代入得:1/(1+ζ^2)+f'(ζ)arctanζ=0
即:(1+ζ^2)f'(ζ)arctanζ=-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询