∫cos²(x/2)dx=?
2个回答
展开全部
∫cos²(x/2)dx=(x+sinx)/2+C。C为常数。
解答过程如下:
∫cos²(x/2)dx
=∫[(1+cosx)/2]dx
=1/2∫dx+1/2∫cosxdx
=(x+sinx)/2+C
扩展资料:
二倍角公式
sin2α=2sinαcosα
tan2α=2tanα/(1-tan^2(α))
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
半角公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
leipole
2024-10-28 广告
2024-10-28 广告
JMBKKB2.5-PV是我司精心研发的一款高性能电气连接件,专为光伏系统及其他低压电气应用设计。该产品采用优质材料制造,额定电流达2.5A,具备优异的耐候性和电气稳定性,确保在户外及恶劣环境下长期可靠运行。其紧凑的结构设计便于安装与维护,...
点击进入详情页
本回答由leipole提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询