已知函数f(x)=x/(1+x^2) 1 判断其奇偶性 2 判断函数f(x)在区间(1,+∞)上的单调性,并给出证明
1个回答
展开全部
第一个问题:
∵f(x)=x/(1+x^2),∴f(-x)=-x/[1+(-x)^2]=-x/(1+x^2),
∴f(x)=-f(-x),∴f(x)是奇函数。
第二个问题:
∵f(x)=x/(1+x^2),
∴f′(x)
=[x′(1+x^2)-x(1+x^2)′]/(1+x^2)^2=(1+x^2-2x^2)/(1+x^2)^2
=(1-x^2)/(1+x^2)^2。
∴在区间(1,+∞)上,f′(x)<0,∴f(x)在区间(1,+∞)上是减函数。
第三个问题:
∵f′(x)=(1-x^2)/(1+x^2)^2,∴在区间(-1,0)上,f′(x)>0,
∴f(x)在区间(-1,0)上是增函数。
∵f(x)=x/(1+x^2),∴f(-x)=-x/[1+(-x)^2]=-x/(1+x^2),
∴f(x)=-f(-x),∴f(x)是奇函数。
第二个问题:
∵f(x)=x/(1+x^2),
∴f′(x)
=[x′(1+x^2)-x(1+x^2)′]/(1+x^2)^2=(1+x^2-2x^2)/(1+x^2)^2
=(1-x^2)/(1+x^2)^2。
∴在区间(1,+∞)上,f′(x)<0,∴f(x)在区间(1,+∞)上是减函数。
第三个问题:
∵f′(x)=(1-x^2)/(1+x^2)^2,∴在区间(-1,0)上,f′(x)>0,
∴f(x)在区间(-1,0)上是增函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询