已知:如图,在△ABC中,AB=AC,点D与E分别是边AC,AB上的高,且DE//BC,O是BD与CE的交点
2个回答
展开全部
(1)在△ABD和△AEC中
AB=AC;∠BAD=∠CAE;
又DE平行BC,所以△AED也是等腰三角形,所以AE=AD
所以△ABD≌△AEC
∴ ∠ABD=∠ACE
(2)因为∠ABC=∠ACB
∠OBC=∠ABC-∠ABD,∠OCB=∠ACB-∠ACE,第一问结论∠ABD=∠ACE
所以∠OBC=∠OCB
所以OB=OC
所以△ABO≌△ACO
所以∠BAO=∠CAO
所以△EAO≌△DAO
记OA,DE交点为M
则有EM=DM,全等三角形对应线段相等 所以OA平分DE
用边边边可证△EAM≌△DAM
所以∠EMA=∠DMA
又∠EMA+∠DMA=180°
所以 ∠EMA=90°
所以OA⊥DE
所以OA垂直平分DE
AB=AC;∠BAD=∠CAE;
又DE平行BC,所以△AED也是等腰三角形,所以AE=AD
所以△ABD≌△AEC
∴ ∠ABD=∠ACE
(2)因为∠ABC=∠ACB
∠OBC=∠ABC-∠ABD,∠OCB=∠ACB-∠ACE,第一问结论∠ABD=∠ACE
所以∠OBC=∠OCB
所以OB=OC
所以△ABO≌△ACO
所以∠BAO=∠CAO
所以△EAO≌△DAO
记OA,DE交点为M
则有EM=DM,全等三角形对应线段相等 所以OA平分DE
用边边边可证△EAM≌△DAM
所以∠EMA=∠DMA
又∠EMA+∠DMA=180°
所以 ∠EMA=90°
所以OA⊥DE
所以OA垂直平分DE
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询