高中数学立体几何有哪些小性质、小结论?

做题中常用到的经验性的小性质。知道多少说多少我要的是立体几何做题时的经验性的小技巧,比如正四面体高于棱长的关系等。... 做题中常用到的经验性的小性质。知道多少说多少
我要的是立体几何做题时的经验性的小技巧,比如正四面体高于棱长的关系等。
展开
死亡消灭
2013-01-13 · TA获得超过217个赞
知道答主
回答量:81
采纳率:0%
帮助的人:49.1万
展开全部
线//面:1:a//b,a不在面A内,b在面A内,推出a//面A.
2:面A//面B,a在面A内,推出a//面B.
线垂直面:1:a//b,a垂直面A,推出b垂直面B.
2:面A//面B,a垂直面A,推出a垂直面B.
3:a垂直m,a垂直n,m交n于o点,m在面A内,n在面A内,推出a垂直面A.
4:面A垂直面B,面A交面B于l,a在面A内,a垂直l,推出a垂直面B.

公世宏理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。 (1)判定直线在平面内的依据
(2)判定点在平面内的方法

公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线 。 (1)判定两个平面相交的依据
(2)判定若干个点在两个相交平面的交线上

公理3:经过不在一条直线上的三点,有且只有一个平面。 (1)确定一个平面的依据
(2)判定若干个点共面的依据

推论1:经过一条直线和这条直线外一点,有且仅有一个平面。 (1)判定若干条直线共面的依据
(2)判断若干个平面重合的依据

(3)判断几何图形是平面图形的依据

推论2:经过两条相交直线,有且仅有一个平面。
推论3:经过两条平行线,有且仅有一个平面。

立体几何 直线与平面

--------------------------------------------------------------------------------
空 间 二 直 线 平行直线 公理4:平行于同一直线的两条直线互相平
等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。

异面直线

空 间 直 线 和 平 面 位





(1)直线在平面内——有无数个公共点
(2)直线和平面相交——有且只有一个公共点

(3)直线和平面平行——没有公共点


线










判定定理
性质定理


线










判 定 定 理
性 质 定 理

立体几何 直线与平面

--------------------------------------------------------------------------------
直线与平面所成的角 (1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角
(2)一条直线垂直于平面,定义这直线与平面所成的角是直角
(3)一条直线和平面平行,或在平宴让面内,定义它和平面所成的角是00的角
三垂线定理 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直
三垂线逆定理 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直
空间两个平面 两个平面平行 判定
性质
(1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行
(2)垂直于同一直线的两个平面平行
(1)两个平面平行,其中一个平面内的直线必平行于另一个平面
(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行

(3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面

相交的两平面 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面
二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角

平面角是直角的二面角叫做直二面角

两平面垂直 判定
性质
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 (1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面
(2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内

立体几何 多面体、棱柱、棱锥

--------------------------------------------------------------------------------
多面体
定义 由若干个多边形所围成的几何体叫做多面体。
棱柱 斜棱柱:侧棱不垂直于底面的棱柱。
直棱柱:侧棱与底面垂晌返局直的棱柱。
正棱柱:底面是正多边形的直棱柱。
棱锥 正棱锥:如果棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。

到一定点距离等于定长或小于定长的点的集合。
欧拉定理
简单多面体的顶点数V,棱数E及面数F间有关系:V+F-E=2 长方形的周长=(长+宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长
三角形的面积=底×高÷2
平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2
直径=半径×2 半径=直径÷2
圆的周长=圆周率×直径=
圆周率×半径×2
圆的面积=圆周率×半径×半径
长方体的表面积=
(长×宽+长×高+宽×高)×2
长方体的体积 =长×宽×高
正方体的表面积=棱长×棱长×6
正方体的体积=棱长×棱长×棱长
圆柱的侧面积=底面圆的周长×高
圆柱的表面积=上下底面面积+侧面积
圆柱的体积=底面积×高
圆锥的体积=底面积×高÷3
长方体(正方体、圆柱体)
的体积=底面积×高
平面图形
名称 符号 周长C和面积S
正方形 a—边长 C=4a
S=a2
长方形 a和b-边长 C=2(a+b)
S=ab
三角形 a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a+b+c)/2 S=ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)

四边形 d,D-对角线长
α-对角线夹角 S=dD/2·sinα
平行四边形 a,b-边长
h-a边的高
α-两边夹角 S=ah
=absinα
菱形 a-边长
α-夹角
D-长对角线长
d-短对角线长 S=Dd/2
=a2sinα
梯形 a和b-上、下底长
h-高
m-中位线长 S=(a+b)h/2
=mh
圆 r-半径
d-直径 C=πd=2πr
S=πr2
=πd2/4
扇形 r—扇形半径
a—圆心角度数
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形 l-弧长
b-弦长
h-矢高
r-半径
α-圆心角的度数 S=r2/2·(πα/180-sinα)
=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2·[r2-(b/2)2]1/2
=r(l-b)/2 + bh/2
≈2bh/3
圆环 R-外圆半径
r-内圆半径
D-外圆直径
d-内圆直径 S=π(R2-r2)
=π(D2-d2)/4
椭圆 D-长轴
d-短轴 S=πDd/4
立方图形
名称 符号 面积S和体积V
正方体 a-边长 S=6a2
V=a3
长方体 a-长
b-宽
c-高 S=2(ab+ac+bc)
V=abc
棱柱 S-底面积
h-高 V=Sh
棱锥 S-底面积
h-高 V=Sh/3
棱台 S1和S2-上、下底面积
h-高 V=h[S1+S2+(S1S1)1/2]/3
拟柱体 S1-上底面积
S2-下底面积
S0-中截面积
h-高 V=h(S1+S2+4S0)/6
圆柱 r-底半径
h-高
C—底面周长
S底—底面积
S侧—侧面积
S表—表面积 C=2πr
S底=πr2
S侧=Ch
S表=Ch+2S底
V=S底h
=πr2h

空心圆柱 R-外圆半径
r-内圆半径
h-高 V=πh(R2-r2)
直圆锥 r-底半径
h-高 V=πr2h/3
圆台 r-上底半径
R-下底半径
h-高 V=πh(R2+Rr+r2)/3
球 r-半径
d-直径 V=4/3πr3=πd2/6
球缺 h-球缺高
r-球半径
a-球缺底半径 V=πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
球台 r1和r2-球台上、下底半径
h-高 V=πh[3(r12+r22)+h2]/6
圆环体 R-环体半径
D-环体直径
r-环体截面半径
d-环体截面直径 V=2π2Rr2
=π2Dd2/4
桶状体 D-桶腹直径
d-桶底直径
h-桶高 V=πh(2D2+d2)/12
(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母线是抛物线形) 这些可以了吧?赞一个啊!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式