用MATLAB求解微分方程dy/dx-2y/(x+1)=(x+1)^5/2
2个回答
展开全部
解:
对应的齐次方程为
dy/dx-2y/(x+1)=0
dy/y=2dx/(x+1)
ln|y|=2ln|x+1|+ln|C1|
y=C1(x+1)²
用常数变易法,把C1换成u,即令
y=u(x+1)² ①
那么 dy/dx=u '(x+1)²+2u(x+1)
代入所给非齐次方程,得
u '=(x+1)^(1/2)
两端积分,得 u=2/3 (x+1)^(3/2) +C
把上式代入①式,即得所求方程的通解为y=(x+1)²[2/3 (x+1)^(3/2)+C]
对应的齐次方程为
dy/dx-2y/(x+1)=0
dy/y=2dx/(x+1)
ln|y|=2ln|x+1|+ln|C1|
y=C1(x+1)²
用常数变易法,把C1换成u,即令
y=u(x+1)² ①
那么 dy/dx=u '(x+1)²+2u(x+1)
代入所给非齐次方程,得
u '=(x+1)^(1/2)
两端积分,得 u=2/3 (x+1)^(3/2) +C
把上式代入①式,即得所求方程的通解为y=(x+1)²[2/3 (x+1)^(3/2)+C]
追问
matlab
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询