
已知:如图,在等边三角形ABC中,D、E分别为BC、AC上的点,且AE=CD,连接AD
已知:如图,在等边三角形ABC中,D、E分别为BC、AC上的点,且AE=CD,连接AD、BE交于点P,作BQ⊥AD,垂足为Q.求证:BP=2PQ...
已知:如图,在等边三角形ABC中,D、E分别为BC、AC上的点,且AE=CD,连接AD、BE交于点P,作BQ⊥AD,垂足为Q.求证:BP=2PQ
展开
展开全部
证明:
∵等边△ABC
∴AB=AC,∠BAC=∠C=60
∵AE=CD
∴△ABE≌△CAD (SAS)
∴∠ABE=∠CAD
∴∠BPD=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60
∵BQ⊥AD
∴BP=2PQ
数学辅导团解答了你的提问,理解请及时采纳为最佳答案。
∵等边△ABC
∴AB=AC,∠BAC=∠C=60
∵AE=CD
∴△ABE≌△CAD (SAS)
∴∠ABE=∠CAD
∴∠BPD=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60
∵BQ⊥AD
∴BP=2PQ
数学辅导团解答了你的提问,理解请及时采纳为最佳答案。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询