已知m>0,n>0,向量a=(1,1),向量b=(m,n-3),且a⊥(a+b),则1/m+4/n的最小值为

anranlethe
2013-01-13 · TA获得超过8.6万个赞
知道大有可为答主
回答量:1.7万
采纳率:80%
帮助的人:2.2亿
展开全部
向量a=(1,1),向量b=(m,n-3),
a+b=(m+1,n-2)
a⊥(a+b),则:a*(a+b)=0
即:m+1+n-2=0
得:m+n=1
所以,1/m+4/n=(1/m+4/n)(m+n)
=1+n/m+4m/n+4
=5+n/m+4m/n
因为m>0,n>0
由基本不等式:n/m+4m/n≧4
当且仅当n/m=4m/n时,等号成立
所以,1/m+4/n=5+n/m+4m/n≧5+4=9
所以,1/m+4/n的最小值为9

祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O
pppp53335
2013-01-13 · TA获得超过3675个赞
知道大有可为答主
回答量:3084
采纳率:0%
帮助的人:1371万
展开全部
解:
向量(a+b)=(1+m,n-2)
依题意
1+m+n-2=0
所以m+n=1
1/m+4/n=(m+n)(1/m+4/n)=1+4m/n+n/m+4>=5+2根号4=5+4=9
所以最小值为9
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式