展开全部
解: (0.1²+0.2²+0.3²+0.4²)²/(0.1³+0.2³+0.3³+0.4³)³
=[0.01(1+4+9+16) ]² / [0.001(1+8+27+64)]³
=0.3² /0.1³
=90
解法二:1^1+2^2+……+n^2=1/6*n(2n+1)(n+1)
1^3+2^3+3^3+……+n^3=(1+2+3+……+n)^2
所以
(0.1²+0.2²+0.3²+0.4²)²/(0.1³+0.2³+0.3³+0.4³)³
= (0.1²×1³+0.1²×2²+0.1²×3²+0.1²×4²)²/(0.1³×1³+0.1³×2³+0.1³×3³+0.1³×4³)³
=0.01²(1³+2²+3²+4²)²/[0.001³(1³+2³+3³+4³)³]
=0.01²·[1/6·4(4+1)(8+1)]² / {0.001³×[(1+2+3+4)²]³}
=0.01²·[30]² / {0.001³×[(100]³}
=0.3² /0.1³
=90
=[0.01(1+4+9+16) ]² / [0.001(1+8+27+64)]³
=0.3² /0.1³
=90
解法二:1^1+2^2+……+n^2=1/6*n(2n+1)(n+1)
1^3+2^3+3^3+……+n^3=(1+2+3+……+n)^2
所以
(0.1²+0.2²+0.3²+0.4²)²/(0.1³+0.2³+0.3³+0.4³)³
= (0.1²×1³+0.1²×2²+0.1²×3²+0.1²×4²)²/(0.1³×1³+0.1³×2³+0.1³×3³+0.1³×4³)³
=0.01²(1³+2²+3²+4²)²/[0.001³(1³+2³+3³+4³)³]
=0.01²·[1/6·4(4+1)(8+1)]² / {0.001³×[(1+2+3+4)²]³}
=0.01²·[30]² / {0.001³×[(100]³}
=0.3² /0.1³
=90
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询