
标准正分布的分布函数Φ(x)如何计算
Φ(X)是随机变量X的分布函数。
具体回答如图:
分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。
扩展资料:
如果知道了X的分布函数,我们就能知道X落在任意区间上的概率。从这个意义上讲,分布函数完全描述了随机变量的统计规律。
由于F(x)是一个单调有界的非减法函数,因此F(x0+0)在x0点上的右极限必然存在。
离散随机变量的分布规律与其分布函数是互斥的。它们都可以用来描述离散随机变量的统计规律,但分布规律比分布函数更直观简单,处理起来也更方便。
因此,离散随机变量一般用分布规律(概率函数)来描述,而不是用分布函数来描述。
参考资料来源:百度百科--分布函数

2023-08-25 广告
Φ(x)=1/2+(1/√π)*∑(-1)^n*(x/√2)^(2n+1)/(2n+1)/n! 其中n从0求和到正无穷因为正态分布是超越函数,所以没有原函数,只能用级数积分的方法。
称其分布为高斯分布或正态分布,记为N(μ,σ2),其中为分布的参数,分别为高斯分布的期望和方差。当有确定值时,p(x)也就确定了,特别当μ=0,σ2=1时,X的分布为标准正态分布。
μ正态分布最早由棣莫佛于1730年在求二项分布的渐近公式时得到;后拉普拉斯于1812年研究极限定理时也被引入。
扩展资料
标准正分布的性质:
1、密度函数关于平均值对称
2、平均值与它的众数(statistical mode)以及中位数(median)同一数值。
3、函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。
4、95.449974%的面积在平均数左右两个标准差的范围内。
5、99.730020%的面积在平均数左右三个标准差的范围内。
6、99.993666%的面积在平均数左右四个标准差的范围内。
7、函数曲线的反曲点(inflection point)为离平均数一个标准差距离的位置。
Φ(x)=1/2+(1/√π)*∑(-1)^n*(x/√2)^(2n+1)/(2n+1)/n! 其中n从0求和到正无穷因为正态分布是超越函数,所以没有原函数,只能用级数积分的方法。
正态分布若的密度函数(频率曲线)为正态函数(曲线) (3-1)则称 服从正态分布,记号 ~ 。其中 、 是两个不确定常数,是正态分布的参数,不同的 、不同的 对应不同的正态分布。
扩展资料:
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
参考资料来源:百度百科-正态分布
因为考试不让查表啊。。。
放心吧,若是用到的话,出题的老师会在在相应的题的后面注明Φ(1.5)等于多少的,或者以其它形式给出,例如以分位数的形式给出等等。要不谁有那么好的记忆力去记这些东西?若是用到了,而老师又没有给出,这是一个非常严重的教学事故的。