在线急求!!!
如图,在平面直角坐标系中,A(3m+2),B(0,m+6)分别是x轴负半轴,y轴的正半轴上的点,OA=OB,C为OB上一动点。(2)过B点作BD⊥AC于D,若AC=2BD...
如图,在平面直角坐标系中,A(3m+2),B(0,m+6)分别是x轴负半轴,y轴的正半轴上的点,OA=OB,C为OB上一动点。
(2)过B点作BD⊥AC于D,若AC=2BD,求∠OAC的度数。
(3)过C点在第二象限内作CE⊥AC,且CE=CA,连EB,当C点运动时,求角BCE+角BEC的度数。
大哥大姐帮帮忙吧,答对有追加 展开
(2)过B点作BD⊥AC于D,若AC=2BD,求∠OAC的度数。
(3)过C点在第二象限内作CE⊥AC,且CE=CA,连EB,当C点运动时,求角BCE+角BEC的度数。
大哥大姐帮帮忙吧,答对有追加 展开
3个回答
展开全部
(2)首先,因为OA=OB,所以根据A,B的坐标很容易得出3m+2=m+6 即m=2,设OC=X
然后,因为∠BCD=∠ACO,所以我们可以列一个方程,相似三角形 AC/AO=BC/BD
即AC/8=(8-X)/BD 因为三角形ACO是直角三角形,所以勾股定理 64+X^2=AC^2
两个方程,两个未知数,解出来就行了。∠OAC的度数也就出来了
(3)45
如上图,因为三角形ACE和AOB都是等边直角三角形,所以他们相似,所以会有
AO/AB=AC/AE,在三角形AOC和三角形ABE中,又由于∠OAC=∠OAB-∠BAC
∠BAE=∠CAE-∠BAC ∠OAB=∠CAE=45度 显然∠OAC=∠BAE,所以三角形AOC和三角形ABE相似,所以∠ABE=90度,显然,∠EBC=90度+45度=135度,在三角形EBC中,∠BEC+∠BCE=180度-∠EBC=45度
2013-01-15 · 知道合伙人金融证券行家
关注
展开全部
OA=OB => -(3m+2)=m+6 => m=-2
A(-4,0) B(0,4)
设∠OAC=∠DBC=a,则
4/AC=cosa,AC=4/cosa,BD=2/cos
OC/OA=tana,OC=4tana,BC=4-4tana
cosa=BD/BC=(2/cos)/(4-4tana)=1/(2cosa-2sina)
2cos²a-2sinacos=1
cos2a=sin2a
2a=45º
a=22.5º
A(-4,0) B(0,4)
设∠OAC=∠DBC=a,则
4/AC=cosa,AC=4/cosa,BD=2/cos
OC/OA=tana,OC=4tana,BC=4-4tana
cosa=BD/BC=(2/cos)/(4-4tana)=1/(2cosa-2sina)
2cos²a-2sinacos=1
cos2a=sin2a
2a=45º
a=22.5º
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询