数学与应用数学专业的主要课程有哪些?

数学与应用数学专业的主要课程有哪些?... 数学与应用数学专业的主要课程有哪些? 展开
 我来答
光瑞渊0eb
高粉答主

2019-05-30 · 说的都是干货,快来关注
知道小有建树答主
回答量:158
采纳率:100%
帮助的人:2.4万
展开全部

数学专业的专业课程有:

一、数学分析

又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。

数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。

二、高等代数

初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。

发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。

三、复变函数论

复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 复数起源于求代数方程的根。

复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。

四、抽象代数

抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用「群」的概念彻底解决了用根式求解代数方程的可能性问题。

他是第一个提出「群」的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。

五、近世代数

近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。

法国数学家伽罗瓦在1832年运用「群」的思想彻底解决了用根式求解多项式方程的可能性问题。他是第一个提出「群」的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。

参考资料来源:

百度百科—数学分析

百度百科—高等代数

百度百科—复变函数论

百度百科—抽象代数

百度百科—近世代数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
嘉怡之吻
2010-04-27 · TA获得超过1.8万个赞
知道大有可为答主
回答量:4514
采纳率:0%
帮助的人:3347万
展开全部
课程编号 课程名称 学时数 学分数
03110015-8 数学分析 348 19
授课对象:数学与应用数学专业学生
内容提要:本课程是数学专业的一门主要基础课。主要介 绍极限论、一元微积分、无穷级数与多元微积分等方面的系统知识。通过学习使学生正确理解和掌握数学 分析的基本概念和理论,初步掌握数学分析的论证方法,较熟练地进行积分计算并获得初步应用的能力, 为进一步学习本专业的后继课程及理解和驾驭中学数学教材打下必要的基础。
考核方式:闭卷考试
教 材:华东师大编《数学分析》,高等教育出版社
参考书目:复旦大学数学系编《数学分析》;刘玉琏 编《数学分析讲义》;北京大学编《数学分析》

课程编号 课程名称 学时数 学分数
03110054 解析几何 80 4
授课对象:数学与应用数学专业学生
内容提要:解析几何是用代数的方法来研究几何图形的性 质,包括矢量与坐标、轨迹与方程、平面与空间直线、柱面、锥面、旋转曲面与二次曲面、二次曲线和二 次曲面的一般理论等基本内容。是数学与应用数学专业的主要基础课程之一,是数学分析、高等代数学课 程的必学前序课程。
考核方式:闭卷考试
教 材:吕林根、许子道编《解析几何》,高等教育出版社
参考书目:吕林根等编《解析几何学习指导书 》;朱鼎勋编《空间解析几何》

课程编号 课程名称 学时数 学分数
03110066-7 高等代数 198 11
授课对象:数学与应用数学专业学生
内容提要:本课程是数学专业的一门重要基础课,也是学 习其它数学专业课程所必修的先行课。它主要介绍一元多项式与多元多项式理论、行列式与线性方程组的 基本理论、矩阵、二次型、线性空间、线性变换、特征根与特征子空间、欧氏空间的基本理论,使学生掌 握多项式及线性代数的基本理论,培养学生利用代数方法解决实际问题的能力。
考核方式:闭卷考试
教 材:北京大学编《高等代数》,高等教育出版社
参考书目:张禾瑞等主编《高等代数》,高等教育出 版社;复旦大学编《高等代数》上海科技出版社

课程编号 课程名称 学时数 学分数
03110084 常微分方程 72 4
授课对象:数学与应用数学专业学生
预修课程:数学分析、高等代数
内容提要:常微分方 程是研究微分方程解的理论和求解方法的一门学科(主要研究常微分方程),它是既经典又充满活力的应 用性与理论性并存的学科。主要内容有一阶常微分方程的解的存在性、唯一性理论;一阶微分方程的求解 ;高阶微分方程的求解;线性微分方程(组)的理论与求解。要求学生正确理解常微分方程的基本概念, 掌握基本理论和主要方法,具有一定的解题能力,为进一步学习本学科近代理论和后继课奠定基础。
考核方式:闭卷考试
教 材:王高雄、周志铭等编《常微分方程》,高等教育出版社
参考书目:南京大学,叶彦谦编《常微分 方程》;复旦大学编《常微分方程》

课程编号 课程名称 学时数 学分数
03110094 复变函数 72 4
授课对象:数学与应用数学专业学生
预修课程:数学分析
内容提要:本课程是数学专业的 重要专业课。主要介绍单复变函数的分析理论和几何理论的基本内容。包括复数、复变函数、解析函数、 复变函数的积分、级数展开、留数理论、保形变换和解析开拓等。通过学习,使学生掌握复变函数的基本 理论和方法,并获得初步应用的能力。
考核方式:闭卷考试
教 材:钟玉泉著《复变函数》,高等教育出版社
参考书目:余家荣著《复变函数》

课程编号 课程名称 学时数 学分数
03110106 概率论 72 4
授课对象:数学与应用数学专业学生
预修课程:数学分析、高等代数
内容提要:概率论是 研究随机现象统计规律的数学学科,是数学专业的重要基础课。它主要介绍事件及其运算、古典概率、概 率空间、条件概率、实验的独立性、贝努里实验等。
考核方式:闭卷考试
教 材:复旦大学编《概率论》,高等教育出版社
参考书目:中山大学数学力学系编《概率论与数理统计 》(上、下册),高等教育出版社

课程编号 课程名称 学时数 学分数
03110114 近世代数 72 4
授课对象:数学与应用数学专业学生
预修课程:高等代数
内容提要:该课程是数学专业重 要选修课,也是学习现代数学的许多重要领域必备的基础。它侧重研究各代数结构,系统介绍映射与代数 运算、同态与同构、群、环与域的基本构造。培养学生抽象思维的能力和从群、环、域各代数体系出发认 识若干代数对象的性质和结构的能力。
考核方式:闭卷考试
教 材:张禾瑞编《近世代数》,高等教育出版社
参考书目:吴品三编《近世代数》,高等教育出版社; 熊全淹编《近世代数》

课程编号 课程名称 学时数 学分数
03110134 实变函数 72 4
授课对象:数学与应用数学专业学生
预修课程:数学分析
内容提要:本课程是数学专业的 重要专业课。它系统介绍勒贝格积分理论,包括集合论、、点集测度理论、可测函数理论和勒贝格积分理 论等。通过学习,使学生掌握近代抽象分析的基本思想,加深对数学分析及中学数学教学有关内容的理解 ,并为进一步学习现代数学理论奠定初步基础。
考核方式:闭卷考试
教 材:郑维行、王声望编《实变函数与泛函分析概论》(上册),高等教育出版社
参考书目:华东师大 编《实变函数与泛函分析初步》(上册)

课程编号 课程名称 学时数 学分数
03110173 泛函分析 48 3
授课对象:数学与应用数学专业学生
预修课程:数学分析、实变函数
内容提要:本课程是 数学与应用数学专业的一门专业限选课程。主要讲述距离空间、赋范线性空间、希尔伯特空间等概念,线 性分析的几条基本定理,全连续算子的黎斯—邵德尔理论,完备内积空间中有界自伴算子的谱理论初步等 。通过本课程的学习,使学生对近代分析有一基本了解,为以后继续从事科研工作打下较扎实的基础。
考核方式:闭卷考试
教 材:郑维行、王声望编《实变函数与泛函分析概论》(下册),高等教育出版社
参考书目:华东师大 编《实变函数与泛函分析初步》(下册)

课程编号 课程名称 学时数 学分数
03110123 高等几何 54 3
授课对象:数学与应用数学专业学生
预修课程:解析几何、高等代数
内容提要:该课程是 数学专业的重要基础课之一。它主要讨论一维和二维射影几何为主,系统地介绍射影几何的基本概念,直 线间的射影对应,射影平面间的直射对应和对射对应,射影变换的基本不变量交比,变换群与几何学,二 次曲线的射影理论与仿射理论,射影几何基础,非欧几何概要。
考核方式:闭卷考试
教 材:梅向明、刘增贤、林向岩编《高等几何》,高等教育出版社
参 考书目:朱德祥编《高等几何》

课程编号 课程名称 学时数 学分数
03110154 微分几何 72 4
授课对象:数学与应用数学专业学生
预修课程:解析几何、数学分析
内容提要:本课程是 数学专业的重要选修课。主要介绍简单曲线、曲率和挠率、Frenet公式、空间曲线的邻近结构、平面曲线 、曲线论基本定理、曲面的第一、第二基本形式、主曲率、Gauss曲率、可展曲面、曲面论基本定理、测 地线等。通过学习,要求学生掌握三维欧氏空间中曲线、曲面的局部性质和以向量分析 为工具和研究方法,发展空间想象能力,进一步提高数学素养。
考核方式:闭卷考试
教 材:梅向明、黄敬之编《微分几何》,高等教育出版社
参考书目:吴大任编《微分几何讲义》

课程编号 课程名称 学时数 学分数
03110144 计算方法 72 4
授课对象:数学与应用数学专业学生
预修课程:高等代数、数学分析、解析几何、微分方程
内容提要:对数学中的一些常见的问题:线性方程组求解、方程求根、矩阵特征值及特征向量、插值 、定积分、及微分方程初值问题等进行了讨论。介绍了计算的方法及这些方法的基本理论和基本特点。使 学生通过学习掌握必要的计算方法理论和计算技能,能熟练地编写计算方法的算法程序。
考核方式:闭卷考试
教 材:张得荣编《计算方法》,人民教育出版社
参考书目:G.M.菲利普斯编《数值分析的理论及其应用 》;G.W.斯图尔特编《矩阵计算引论》;阿特金森编《数值分析引论》
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
woheyyo
2013-01-15 · TA获得超过155个赞
知道答主
回答量:5
采纳率:0%
帮助的人:5.4万
展开全部
数学分析、高等代数、解析几何、常微分方程、统计初步、信息技术应用、近世代数、概率论、数据结构、复变函数、微分几何、实变函数、数学模型、拓扑学、偏微分方程、几何基础,还有一些选修课,比如数值分析、数值代数、运筹学、组合数学、小波分析、模糊数学、数学软件等等
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
等风亦等你的贝
2018-06-07 · TA获得超过1.1万个赞
知道小有建树答主
回答量:122
采纳率:96%
帮助的人:3.3万
展开全部

这个专业涵盖数学学科的两个重要内容:基础数学与应用数学。

数学与应用数学专业的课程较偏重基础数学理论,核心课程有:数学分析、高等代数、空间解析几何、常微分方程、复变函数、实变函数、泛函分析、近世代数、数学物理方程、微分几何等。

基础数学:主要研究数学学科的基本理论与发展规律,如费尔马大定理、哥德巴赫猜想、庞加莱猜想等就是基础数学的研究对象。

应用数学:主要研究由实际问题引发的数学理论,并运用数学知识与方法解决生活或其他学科中相关科学技术问题,这些问题大多具有很强的实用性,如图像处理、信道纠错、密码编译与破解、计算机图形实现、金融与精算等。

也有很多是具有很高理论研究价值,如理论物理中的广义相对论研究等,这部分内容与基础数学之间没有本质区别。

扩展资料:

数学与应用数学专业的就业方向

数学在物理、计算机、通信、金融等领域有着广泛的应用。例如医疗诊断仪器CT,它的理论基础是数学;银行理财产品的推出之前需要经过精确的数学计算才能预测其收益;宇宙中黑洞的体积、质量的计算,需要用到高深的数学理论。

由于数学与应用数学专业是长线专业,有六成以上的毕业生选择出国或在国内读研,继续深造。另有不到四成的毕业生,选择直接工作。直接就业的行业有IT行业,银行、保险或证券等金融行业等。

选择读研究生的学生,有1/3的学生选择继续从事基础数学研究方向,1/3的学生选择应用数学方向,另外有1/3的学生选择经济、金融、精算、计算机等其他方向。

中国数学网

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
孙喵喵爱吃鱼
2019-05-30 · 林大数学小学妹
孙喵喵爱吃鱼
林大数学小学妹
采纳数:0 获赞数:45
不知名摄影师

向TA提问 私信TA
展开全部

东北林业大学理学院数学与应用数学大二老学姐来回答一波~看到这个问题,也是勾起了我高考完报志愿时的回忆。高考发挥的比较一般,没有太多的院校供我选择,妈妈是数学老师,在妈妈的熏陶下,从小到大我对数学还是比较感兴趣的,就想这报一个数学专业吧,就这样来了林大数学系。

大学的数学专业和我想象中的完全不一样,上大学前我以为,说是数学专业,其实也就学一本高等数学(也就是常说的高数)。没想到我还是太年轻了!数学专业不仅不学高数,学的学科更是五花八门。我们的课程分为专业课,公共选修课还有专业选修课

拿我自己的课表来说,大一在专业课上学习了数学分析高等代数,以及解析几何。这三门学科也是大部分学校考研时要考的三本书。数分是在高中所学知识的基础上做一个延伸并新介绍了一个非常重要的概念——极限,除此之外还介绍了函数性质,积分,级数等等。高代内容包括行列式,矩阵,线性空间,线性变换等等。高等代数其实是代数学基础,在数学系课程中相对比较简单。因为其高度形式化和抽象化,初学者往往不适应。解析几何则是将代数与几何相结合,更偏重于学生的几何思维。

大二我学习了数学分析,常微分方程,c语言程序与设计,计算方法,实变函数,概率论与数理统计这几门专业课,还有离散数学生物数学这两门专选课。大二与大一相比,不仅学习的课程数变多,难度也是大大增加(头发也掉的更多了)。这里说一下c语言程序与设计,是用c语言代码的形式来解决一些数学问题,如果考研方向与计算机有关,那么这门学科是一定要认真学习的。再说最让我“头秃”的实变函数,那是对数学更加深入的学习,定理的证明更是难上加难。

再往后就是我们还没学习过的:复变函数,泛函分析,数学建模,近世代数,数理方程。不仅仅是这些,还有根据自己兴趣选择的选修课。

总之,数学专业的课程是十分丰富的,希望我的回答对你有所帮助,也欢迎报考数学专业,虽然有一些难度,但是成就感也是非常高的。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式