
已知函数f(x)=x³-ax²+1在区间(0,2)内单调递减,则实数a的取值范围是
2个回答
展开全部
选A 的。O(∩_∩)O
首先对f(x)求导。得f'(x)=3x²-2ax
因为f(x)在(0,2)上单调递减,所以f'(x)≦0在(0,2)恒成立。所以3x²-2ax ≦0,在(0,2)恒成立。所以a ≧3x/2在(0,2)上恒成立,即a≧3x/2在(0,2)的最大值。
因为3x/2为增高数,所以在2处取最大值,为3。
所以a ≧3。(不知道你有没有学导数,这样还是比较简单的。)
首先对f(x)求导。得f'(x)=3x²-2ax
因为f(x)在(0,2)上单调递减,所以f'(x)≦0在(0,2)恒成立。所以3x²-2ax ≦0,在(0,2)恒成立。所以a ≧3x/2在(0,2)上恒成立,即a≧3x/2在(0,2)的最大值。
因为3x/2为增高数,所以在2处取最大值,为3。
所以a ≧3。(不知道你有没有学导数,这样还是比较简单的。)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询