已知f(α)=[sin(π-α)*cos(2π-α)*tan(-α+3π/2)]/cos(-π-α) (1)若2f(π+α)=f(π/2+α),求
(sinα+cosα)/(sinα-cosα)+cos^2α的值(2)若f(α)=3/5,求sinα,tanα的值...
(sinα+cosα)/(sinα-cosα)+cos^2α的值
(2)若f(α)=3/5,求sinα,tanα的值 展开
(2)若f(α)=3/5,求sinα,tanα的值 展开
2个回答
展开全部
解:f(α)=sin(π-α)*cos(2π-α)*tan(-α+3π/2)/cos(-α-π)
=-sin(α)*cos(α)*cot(α)/cos(α)
=-sin(α)*cot(α)
=-cosα.
(1) ∵ 2f(π+α)=f(π/2+α)
∴ -2cos(π+α)=-cos(π/2+α)
∴2cosα=sinα
∴tanα=2
(sinα+cosα)/(sinα-cosα)桐凳+cos^2α
=(tanα+1)/(tanα-1)+1/((tanα)^2+1)
=3+1/5=16/5.
(2)f(α)=3/5,即-cosα=3/5, ∴cosa=-3/5,sina=4/5或-4/5,局乎旅tana=4/3或-4/顷弊3.
如果帮到你,请记得采纳,O(∩_∩)O谢谢
=-sin(α)*cos(α)*cot(α)/cos(α)
=-sin(α)*cot(α)
=-cosα.
(1) ∵ 2f(π+α)=f(π/2+α)
∴ -2cos(π+α)=-cos(π/2+α)
∴2cosα=sinα
∴tanα=2
(sinα+cosα)/(sinα-cosα)桐凳+cos^2α
=(tanα+1)/(tanα-1)+1/((tanα)^2+1)
=3+1/5=16/5.
(2)f(α)=3/5,即-cosα=3/5, ∴cosa=-3/5,sina=4/5或-4/5,局乎旅tana=4/3或-4/顷弊3.
如果帮到你,请记得采纳,O(∩_∩)O谢谢
展开全部
f(α)=[sin(π-α)*cos(2π-α)*tan(-α+3π/2)]/cos(-π-α)
=[sinα*(-cosα)*cotα]/cos(π+α)
=[sinα*(-cosα)*cotα]/(-cosα)
=sinα*cotα
=sinα*cosα/sinα
=cosα
2f(π+α)=f(π/2+α)
2cos(π+α)=cos(π/2+α)
-2cosα=-sinα
2cosα=sinα
sinα/cosα=2
tanα=2
(sinα+cosα)/(sinα-cosα)+cos^2α
=(sinα/cosα+cosα/cosα)/(sinα/cosα-cosα/cosα)+cos^2α/1
=(tanα+1)/(tanα-1)+cos^2α/(sin^2α+cos^2α)
=(2+1)/(2-1)+(cos^2α/cos^2α)/(sin^2α/cos^2α+cos^2α/cos^2α)
=3+1/(tan^2α+1)
=3+1/(2^2+1)
=3+1/竖带裂悔5
=16/5
f(α)=3/5
cosα=3/5
sinα=±4/5
tanα=(±4/5)/(3/5)
=±4/余源芦3
=[sinα*(-cosα)*cotα]/cos(π+α)
=[sinα*(-cosα)*cotα]/(-cosα)
=sinα*cotα
=sinα*cosα/sinα
=cosα
2f(π+α)=f(π/2+α)
2cos(π+α)=cos(π/2+α)
-2cosα=-sinα
2cosα=sinα
sinα/cosα=2
tanα=2
(sinα+cosα)/(sinα-cosα)+cos^2α
=(sinα/cosα+cosα/cosα)/(sinα/cosα-cosα/cosα)+cos^2α/1
=(tanα+1)/(tanα-1)+cos^2α/(sin^2α+cos^2α)
=(2+1)/(2-1)+(cos^2α/cos^2α)/(sin^2α/cos^2α+cos^2α/cos^2α)
=3+1/(tan^2α+1)
=3+1/(2^2+1)
=3+1/竖带裂悔5
=16/5
f(α)=3/5
cosα=3/5
sinα=±4/5
tanα=(±4/5)/(3/5)
=±4/余源芦3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询