如图1,在平面直角坐标系中,已知A(a,0),B(0,b),且a、b满足√a-4+√b+4=0,点C、B关于x轴对称.
(1)求A、C两点坐标
(2)如图1,点M为射线OA上一动点,过点M作MN⊥CM交直线AB于N,连BM,问是否存在点M使S△AMN=3/2S△AMB,若存在,求M点坐标;若不存在,请说明理由.
(3)如图2,点P为第二象限角平分线上一动点,将射线BP绕点B逆时针旋转30°,交x轴于点Q,连PQ.在点P运动过程中,当∠BPQ=45°时,求BQ的长度.
急。。。星期五要交的~~~~ 展开
(1)
√(a-4)+√(b+4)=0
√(a-4) ≥ 0, √(b+4) ≥ 0
√(a- 4) = √(b+4) = 0
a = 4, b = -4
A(4, 0), B(0, -4), C(0, 4)
(2)
M(m, 0), CM的斜率k = (4 - 0)/(0 - m) = -4/m, MN的斜率 = -1/k = m/4
MN的方程: y = (m/4)(x - m)
代入AB的方程: x/4 + y/(-4) = 1, x - y =4
x - (m/4)(x - m) - 4 = 0
4x - mx + m² - 16 = 0
(4 - m)x = 16 - m² = (4+ m)(4 - m)
m = 4时,A,M重合,无意义
x = m + 4
N(m+4, m)
△AMN, △AMB的底均为AM, S△AMN=(3/2)S△AMB, 只须|N的纵坐标| = (3/2)|B的纵坐标|
m = (3/2)|-4| = 6
M(6, 0)
(3)
OP的方程: y = -x (x < 0)
P(-p, p), p > 0
Q(-q, 0), q >0
PQ² = (p - q)² + p², PB² = p² + (p + 4)², BQ² = q² + 4²
∠B = 30˚, ∠P = 45˚, ∠Q = 180˚ - (30˚+ 45˚)
sinB = 1/2
sinP = 1/√2
sinQ = sin[180˚ - (30˚+ 45˚)] = sin(30˚ + 45˚) = sin30˚cos45˚ + cos30˚sin45˚ = √2(√3 + 1)/4
按正弦定理: PQ²/sin²B = BQ²/sin²P = PB²/sin²Q
从PQ²/sin²B = BQ²/sin²P可得q = 2p ± 4
从PQ²/sin²B = PB²/sin²Q可得(2 + √3)PQ² = BP²
(2 + √3)[(p - q)² + p²] = p² + (p + 4)² (i)
(A) q = 2p + 4
代入(i), 无解
(B)q = 2p - 4
p = 2(√3 + 1), q = 4√3, BQ = 8
或p = 2(√3 - 1), q = 4(√3 - 2) < 0, 舍去
见图,天蓝线与PQ垂直,是为了显示∠BPQ为45°
第(3)题“sin²”没学呀...我是初二的。。
没学过正弦定理或余弦定理?sin²A是sinA的平方(为了避免开方).